4 research outputs found

    7. Biological Effectiveness of 12 C and 20 Ne Ions with Very High LET

    Get PDF
    Knowledge of radiobiological effects of heavy ions at the cellular and molecular level is of fundamental importance in the field of radiation therapy (for example C ions) and space radiation biology (for example Ne ions). One of the issues that require deeper investigations is a determination of RBE values for a wide range of LET, for all relevant doses, for many cell types and various kinds of radiations During recent years, the biological effectiveness of heavy ions has been widely investigated with the aim to identify physical characteristics relevant to biological actions. These investigations are pertinent to the use of heavy ions in radiosurgery and radiotherapy. What has not been investigated so thoroughly is the biological effectiveness of heavy ions at low energies and very high LET values. The LET, which is equal to the stopping power of heavy particles, increases sharply at the end of the particle's path, forming a so-called Bragg peak. The shape of the Bragg peak depends on the particle type. Because overlying beams with different energies and components of primary and secondary particles are used in radiotherapy, the knowledge of RBE values of very high LET radiation need to be well characterized. An experimental set-up designed for such investigations was constructed at the isochronic cyclotron in Heavy Ion Laboratory. A more detailed description of the set-up can be found in Ref. CHO-K1 cells have been used as a suitable biological system for our studies. The cell line is characterized by genetic stability, the ability to form colonies, a relatively rapid growth rate with a cell cycle of 12-14 hours. For exposure to ions the cells were seeded in specially designed Petri dishes, which were filled with medium, sealed by a parafilm cover and placed in a vertical sample holder mounted in an x-y-z table that was connected to a special stepping motor. The irradiated sample moved under the beam according to a planned route. Movement was initiated when the number of counts detected by the 20 o particle detector reached the preset value. When all fields have been exposed the sample holder returned to the start position. Stored information enabled to evaluate the beam stability and intensity. The whole set-up was surveyed by a digital camera. The total time of exposure per dish was between 1-5 min. depending on the dose and beam intensity. The dose rates were changed from 0.05 Gy/min. to 1 Gy/min depending on the dose. Cell survival was estimated according to standard procedure

    Pervaporationsunterstützte Synthese natürlicher Aromastoffe durch lipasekatalysierte Veresterung: Herrn Professor Dr. rer. nat. Rolf Kümmel zum 65. Geburtstag

    No full text
    Am Beispiel der Synthese von Essigsäure-3-methyl-n-butylester wird ein Prozess zur Herstellung natürlicher Aromastoffe durch Enzymkatalyse im lösemittelfreien System beschrieben. Aufbauend auf den experimentellen Ergebnissen erfolgt die Modellierung der Enzymkinetik, die in der Fortführung dieser Arbeit Bestandteil eines Gesamtmodells zur mathematischen Beschreibung des integrierten Prozesses sein wird

    Recent Advances in Experimental Techniques for Flow and Mass Transfer Analyses in Thermal Separation Systems

    Get PDF
    Modelling flow and mass transfer of thermal separation equipment constitutes one of the most challenging tasks in fluids process engineering. The difficulty of this task comes from the multiscale multiphase flow phenomena in rather complex geometries. Both analysis of flow and mass transfer on different scales as well as validation of models and simulation results require advanced experimental and measurement techniques. As a follow-up to intensive discussions during the 2019 Tutzing Symposium “Separation Units 4.0” a wide set of available modern experimental technologies is presented. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinhei
    corecore