7 research outputs found

    Satellite Assessment of Bio-Optical Properties of Northern Gulf of Mexico Coastal Waters Following Hurricanes Katrina and Rita

    Get PDF
    The impacts of major tropical storms events on coastal waters include sediment resuspension, intense water column mixing, and increased delivery of terrestrial materials into coastal waters. We examined satellite imagery acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) ocean color sensor aboard the Aqua spacecraft following two major hurricane events: Hurricane Katrina, which made landfall on 29 August 2005, and Hurricane Rita, which made landfall on 24 September. MODIS Aqua true color imagery revealed high turbidity levels in shelf waters immediately following the storms indicative of intense resuspension. However, imagery following the landfall of Katrina showed relatively rapid return of shelf water mass properties to pre-storm conditions. Indeed, MODIS Aqua-derived estimates of diffuse attenuation at 490 nm (K_490) and chlorophyll (chlor_a) from mid-August prior to the landfall of Hurricane Katrina were comparable to those observed in mid-September following the storm. Regions of elevated K_490 and chlor_a were evident in offshore waters and appeared to be associated with cyclonic circulation (cold-core eddies) identified on the basis of sea surface height anomaly (SSHA). Imagery acquired shortly after Hurricane Rita made landfall showed increased water column turbidity extending over a large area of the shelf off Louisiana and Texas, consistent with intense resuspension and sediment disturbance. An interannual comparison of satellite-derived estimates of K_490 for late September and early October revealed relatively lower levels in 2005, compared to the mean for the prior three years, in the vicinity of the Mississippi River birdfoot delta. In contrast, levels above the previous three year mean were observed off Texas and Louisiana 7-10 d after the passage of Rita. The lower values of K_490 near the delta could be attributed to relatively low river discharge during the preceding months of the 2005 season. The elevated levels off Texas and Louisiana were speculated to be due to the presence of fine grain sediment or dissolved materials that remained in the water column following the storm, and may also have been associated with enhanced phytoplankton biomass stimulated by the intense vertical mixing and offshore delivery of shelf water and associated nutrients. This latter view was supported by observations of high chlor_a in association with regions of cyclonic circulation

    Seasonal Variability in Air-Sea Fluxes of CO\u3csub\u3e2\u3c/sub\u3e in a River-Influenced Coastal Margin

    Get PDF
    Recent studies in the northern Gulf of Mexico and elsewhere have demonstrated that enhanced biological production in large river plumes may contribute to a net surface influx of atmospheric CO2. However, large rivers also deliver significant amounts of terrestrial carbon into continental margin waters; hence, the potential for large and variable signals in carbon flux exist in these regions. Here, we used a combination of satellite and ship-based observations to examine variability in surface pCO(2) and air-sea flux of carbon dioxide in relation to variations in river discharge and seasonal environmental conditions. Underway surface pCO(2) showed large seasonal differences based on observations acquired during cruises in August 2004, October 2005, and April 2006. Strong cross-shelf gradients in pCO(2) were observed during August 2004 and April 2006, influenced by river outflow. Uniformly high values observed during October 2005 likely reflected the disturbed nature of the system after two major storm events (hurricanes Katrina and Rita). Satellite-derived assessments of pCO(2) were used in conjunction with estimates of wind fields to produce regional maps of surface water pCO(2) and air-sea fluxes. The region was a net sink for atmospheric CO2 in August 2004 (-0.96 to -1.2 mmol C m(-2) d(-1)) and net source during October 2005 and April 2006 (1.0 to 5.4 mmol C m(-2) d(-1)). Uncertainties in flux estimates, particularly for low salinity waters in April 2006, highlighted the need for more extensive in situ observations. Our results illustrate the utility of satellite approaches for providing regional assessments of coastal carbon budgets

    Phytoplankton Spectral Absorption as Influenced by Community Size Structure and Pigment Composition

    No full text
    Assessments were made of the relative importance of package effects and pigment composition in contributing to variations in spectral absorption in shelf waters off North Carolina during May 1997 and off west Florida during October 1998. Measurements of spectral absorption of size-fractionated particulate material on glass fibre filters were made using two methods, the transmittance-reflectance (T-R) method and the quantitative filter technique (QFT). Spectral absorption of phytoplankton pigments was decomposed into a series of 13 Gaussian absorption bands, and absorption band peak heights were related to concentrations of major pigment classes. Maximum weight-specific pigment absorption coefficients for individual absorption bands (p*(m)) derived from the fit of a hyperbolic tangent function to the data were found to be similar for North Carolina and west Florida shelf waters. The values were used to reconstruct spectral absorption in the absence of pigment packaging, which was then compared to measured absorption to provide an assessment of pigment packaging. Package effects were found to be responsible for up to a 62% reduction in the amplitude of major absorption bands, particularly for samples from low-salinity waters and for populations dominated by larger (\u3e3 mum) phytoplankton. Variations in pigment composition were also found to have an impact, although it was smaller (10-28%), on variations in total absorption. Potential bio-optical applications of the Gaussian decomposition approach include the estimation of pigment concentrations from in situ or remotely sensed ocean colour observations. Alternatively, where pigment concentrations are known, it may be possible to estimate absorption. Successful application of such techniques may necessitate characterizations of coefficients specific to a given region and time

    Seasonal Variability in Primary Production and Particle Flux in the Northwestern Sargasso Sea: United States JGOFS Bermuda Atlantic Time-Series Study

    No full text
    The relationship between primary production and sediment trap-derived downward flux of particulate organic matter was characterized over a 2 year period at the U.S. JGOFS Bermuda Atlantic Time-series Study (BATS) site to evaluate the importance of temporal variations in upper ocean biogeochemical processes. Water column-integrated primary production (integral PP), determined once each cruise using C-14 incubations (in situ dawn-to-dusk), peaked in late winter/early spring of both 1989 and 1990. Smaller increases in integral PP also occurred in July 1989 and October-December 1990. Annual integral PP was 9.2 mol C m-2 y-1 in 1989 and 12 mol C m-2 y-1 in 1990. This was higher than the 1959-1963 annual average (6.8 mol C m-2 y-1) determined at Station S located approximately 50 km northwest of the BATS site. Fluxes associated with sinking of total particulate mass, particulate organic carbon (POC) and particulate organic nitrogen (PON) were measured at 150, 200, 300 and 400 m using a free-floating sediment trap array generally deployed once each cruise for 72 h. Fluxes varied seasonally, and within our ability to resolve differences (i.e. monthly sampling), there was no distinguishable time offset between peaks in integral PP and corresponding peaks in elemental flux. Fluxes generally decreased with increasing depth, and fluxes of POC and PON were positively correlated with particulate mass flux at all depths. POC/PON (C/N) ratios at 150 m during periods of high integral PP were generally characteristic of live planktonic biomass. Higher C/N ratios in material collected by the deeper traps were consistent with more rapid losses of PON than POC from sinking particles. POC and PON fluxes at 150 m, nominally the base of the euphotic zone, were positively correlated with integral PP. The fraction of integral PP leaving the euphotic zone in the form of sinking particles (i.e. collected in traps) varied seasonally and was inversely proportional to integral PP. Surface export of organic matter estimated by sediment traps at 150 m was 0. 78 mol C m-2 y-1 (0.10 mol N m-2 y-1) in 1989 and 0.77 mol C m-2 y-1 (0.11 mol N m-2 y-1) in 1990
    corecore