15 research outputs found

    In situ hybridization study of CYP2D mRNA in the common marmoset brain

    Get PDF
    The common marmoset is a non-human primate that has increasingly employed in the biomedical research including the fields of neuroscience and behavioral studies. Cytochrome P450 (CYP) 2D has been speculated to be involved in psycho-neurologic actions in the human brain. In the present study, to clarify the role of CYP2D in the marmoset brain, we investigated the expression patterns of CYP2D mRNA in the brain using in situ hybridization (ISH). In addition, to identify the gene location of CYP2D19, a well-studied CYP2D isoform in the common marmoset, a fluorescence in situ hybridization (FISH) study was performed. Consistent with findings for the human brain, CYP2D mRNA was localized in the neuronal cells of different brain regions; e.g., the cerebral cortex, hippocampus, substantia nigra, and cerebellum. FISH analysis showed that the CYP2D19 gene was located on chromosome 1q, which is homologous to human chromosome 22 on which the CYP2D6 gene exists. These results suggest that CYP2D in the marmoset brain may play the same role as human CYP2D6 in terms of brain actions, and that the CYP2D19 gene is conserved in a syntenic manner. Taken together, these findings suggest that the common marmoset is a useful model for studying psychiatric disorders related to CYP2D dysfunction in the brain

    Origin and Molecular Evolution of the Determinant of Methicillin Resistance in Staphylococci ▿

    No full text
    Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most important multidrug-resistant pathogens around the world. MRSA is generated when methicillin-susceptible S. aureus (MSSA) exogenously acquires a methicillin resistance gene, mecA, carried by a mobile genetic element, staphylococcal cassette chromosome mec (SCCmec), which is speculated to be transmissible across staphylococcal species. However, the origin/reservoir of the mecA gene has remained unclear. Finding the origin/reservoir of the mecA gene is important for understanding the evolution of MRSA. Moreover, it may contribute to more effective control measures for MRSA. Here we report on one of the animal-related Staphylococcus species, S. fleurettii, as the highly probable origin of the mecA gene. The mecA gene of S. fleurettii was found on the chromosome linked with the essential genes for the growth of staphylococci and was not associated with SCCmec. The mecA locus of the S. fleurettii chromosome has a sequence practically identical to that of the mecA-containing region (∼12 kbp long) of SCCmec. Furthermore, by analyzing the corresponding gene loci (over 20 kbp in size) of S. sciuri and S. vitulinus, which evolved from a common ancestor with that of S. fleurettii, the speciation-related mecA gene homologues were identified, indicating that mecA of S. fleurettii descended from its ancestor and was not recently acquired. It is speculated that SCCmec came into form by adopting the S. fleurettii mecA gene and its surrounding chromosomal region. Our finding suggests that SCCmec was generated in Staphylococcus cells living in animals by acquiring the intrinsic mecA region of S. fleurettii, which is a commensal bacterium of animals

    <i>In situ</i> hybridization study of <i>CYP2D</i> mRNA in the common marmoset brain

    No full text

    Staphylococcal Cassette Chromosome mec-Like Element in Macrococcus caseolyticus▿

    No full text
    Macrococcus is a bacterial genus that is closely related to Staphylococcus, which typically is isolated from animal skin and products. The genome analysis of multidrug-resistant Macrococcus caseolyticus strain JCSC5402, isolated from chicken, previously led to the identification of plasmid pMCCL2, which carries a transposon containing an unusual form of the Macrococcus mec gene complex (mecAm-mecR1m-mecIm-blaZm). In M. caseolyticus strain JCSC7096, this mec transposon containing the mec gene complex (designated Tn6045 in this study) was found integrated downstream of orfX on the chromosome. Tn6045 of JCSC7096 was bracketed by the direct repeat sequences (DR) specifically recognized by cassette chromosome recombinase (CCR). A non-mecA-containing staphylococcal cassette chromosome (SCC) element, designated SCC7096, was integrated next to the mec transposon and separated from the latter by a DR. Nested PCR experiments showed that the mec transposon not only was excised singly but also coexcised with SCC7096 from the chromosome at the DRs. The coexcised elements formed the extrachromosomal closed circular DNA of the SCCmec-like element. SCCmec is known to be the mobile element conveying methicillin (meticillin) resistance in staphylococci. However, its origin has been unknown. Our observation revealed a potential mechanism of the generation of a new SCCmec-like element in M. caseolyticus, a commensal bacterium of food animals

    Staphylococcal Cassette Chromosome(SCC) : A Unique Gene Transfer System in Staphylococci

    No full text
    Bacterial Integrative Mobile Genetic Elements (Adam P.Roberts et al eds

    Functional assessment of the gluteus medius, cranial part of the biceps femoris, and vastus lateralis in Beagle dogs based on a novel gait phase classification

    Get PDF
    In humans, walking analysis based on the gait phase classification has been used for interpretation of functional roles of different movements occurring at individual joints, and it is useful for establishing a rehabilitation plan. However, there have been few reports on canine gait phase classification, and this is one of the reasons for preventing progress in canine rehabilitation. In this study, we determined phases of the canine gait cycle (GC) on the basis of the phase classification for human gait. The canine GC was able to be divided into initial contact (IC) and the following 5 phases: loading response (LR), middle stance (MidSt), pre-swing (PSw), early swing (ESw), and late swing (LSw). Next, the hind limb joint angles of the hip, stifle and tarsal joints and results of surface electromyography of the gluteus medius (GM), cranial part of the biceps femoris (CBF) and vastus lateralis (VL) muscles in relation to the gait phases were analyzed. The activities of three muscles showed similar changes during walking. The muscle activities were high in the LR phase and then declined and reached a minimum in the PSw phase, but they increased and reached a peak in the LSw phase, which was followed by the LR phase. In conclusion, the multiphasic canine GC was developed by modification of the human model, and the GC phase-related changes in the muscle activity and joint angles suggested the functions of GM, CBF and VL muscles in walking

    Complete Genome Sequence of Methicillin-Resistant Staphylococcus schleiferi Strain TSCC54 of Canine Origin

    Get PDF
    We report a complete genome sequence of the methicillin-resistant Staphylococcus schleiferi strain TSCC54, isolated from the skin of a dog in Tokyo, Japan

    Population Genetic Structures of Staphylococcus aureus Isolates from Cats and Dogs in Japan

    Get PDF
    We determined the population genetic structures of feline and canine Staphylococcus aureus strains in Japan by multilocus sequence typing (MLST). Ecological analyses suggested that multiple feline-related S. aureus clones, including ST133, naturally occur as commensals and can cause endogenous infections in felines. In contrast, S. aureus populations do not likely include any clone that exhibits tropism in domestic dogs. Even if S. aureus infections occur in dogs, the pathologies are likely exogenous infections
    corecore