123 research outputs found

    Biased Competition in Visual Processing Hierarchies: A Learning Approach Using Multiple Cues

    Get PDF
    In this contribution, we present a large-scale hierarchical system for object detection fusing bottom-up (signal-driven) processing results with top-down (model or task-driven) attentional modulation. Specifically, we focus on the question of how the autonomous learning of invariant models can be embedded into a performing system and how such models can be used to define object-specific attentional modulation signals. Our system implements bi-directional data flow in a processing hierarchy. The bottom-up data flow proceeds from a preprocessing level to the hypothesis level where object hypotheses created by exhaustive object detection algorithms are represented in a roughly retinotopic way. A competitive selection mechanism is used to determine the most confident hypotheses, which are used on the system level to train multimodal models that link object identity to invariant hypothesis properties. The top-down data flow originates at the system level, where the trained multimodal models are used to obtain space- and feature-based attentional modulation signals, providing biases for the competitive selection process at the hypothesis level. This results in object-specific hypothesis facilitation/suppression in certain image regions which we show to be applicable to different object detection mechanisms. In order to demonstrate the benefits of this approach, we apply the system to the detection of cars in a variety of challenging traffic videos. Evaluating our approach on a publicly available dataset containing approximately 3,500 annotated video images from more than 1 h of driving, we can show strong increases in performance and generalization when compared to object detection in isolation. Furthermore, we compare our results to a late hypothesis rejection approach, showing that early coupling of top-down and bottom-up information is a favorable approach especially when processing resources are constrained

    Modelling Visual Search with the Selective Attention for Identification Model (VS-SAIM): A Novel Explanation for Visual Search Asymmetries

    Get PDF
    In earlier work, we developed the Selective Attention for Identification Model (SAIM [16]). SAIM models the human ability to perform translation-invariant object identification in multiple object scenes. SAIM suggests that central for this ability is an interaction between parallel competitive processes in a selection stage and a object identification stage. In this paper, we applied the model to visual search experiments involving simple lines and letters. We presented successful simulation results for asymmetric and symmetric searches and for the influence of background line orientations. Search asymmetry refers to changes in search performance when the roles of target item and non-target item (distractor) are swapped. In line with other models of visual search, the results suggest that a large part of the empirical evidence can be explained by competitive processes in the brain, which are modulated by the similarity between target and distractor. The simulations also suggest that another important factor is the feature properties of distractors. Finally, the simulations indicate that search asymmetries can be the outcome of interactions between top-down (knowledge about search items) and bottom-up (feature of search items) processing. This interaction in VS-SAIM is dominated by a novel mechanism, the knowledge-based on-centre-off-surround receptive field. This receptive field is reminiscent of the classical receptive fields but the exact shape is modulated by both, top-down and bottom-up processes. The paper discusses supporting evidence for the existence of this novel concept

    Explaining efficient search for conjunctions of motion and form: Evidence from negative color effects

    Get PDF
    Dent, Humphreys, and Braithwaite (2011) showed substantial costs to search when a moving target shared its color with a group of ignored static distractors. The present study further explored the conditions under which such costs to performance occur. Experiment 1 tested whether the negative color-sharing effect was specific to cases in which search showed a highly serial pattern. The results showed that the negative color-sharing effect persisted in the case of a target defined as a conjunction of movement and form, even when search was highly efficient. In Experiment 2, the ease with which participants could find an odd-colored target amongst a moving group was examined. Participants searched for a moving target amongst moving and stationary distractors. In Experiment 2A, participants performed a highly serial search through a group of similarly shaped moving letters. Performance was much slower when the target shared its color with a set of ignored static distractors. The exact same displays were used in Experiment 2B; however, participants now responded "present" for targets that shared the color of the static distractors. The same targets that had previously been difficult to find were now found efficiently. The results are interpreted in a flexible framework for attentional control. Targets that are linked with irrelevant distractors by color tend to be ignored. However, this cost can be overridden by top-down control settings. © 2014 Psychonomic Society, Inc

    Influence of Low-Level Stimulus Features, Task Dependent Factors, and Spatial Biases on Overt Visual Attention

    Get PDF
    Visual attention is thought to be driven by the interplay between low-level visual features and task dependent information content of local image regions, as well as by spatial viewing biases. Though dependent on experimental paradigms and model assumptions, this idea has given rise to varying claims that either bottom-up or top-down mechanisms dominate visual attention. To contribute toward a resolution of this discussion, here we quantify the influence of these factors and their relative importance in a set of classification tasks. Our stimuli consist of individual image patches (bubbles). For each bubble we derive three measures: a measure of salience based on low-level stimulus features, a measure of salience based on the task dependent information content derived from our subjects' classification responses and a measure of salience based on spatial viewing biases. Furthermore, we measure the empirical salience of each bubble based on our subjects' measured eye gazes thus characterizing the overt visual attention each bubble receives. A multivariate linear model relates the three salience measures to overt visual attention. It reveals that all three salience measures contribute significantly. The effect of spatial viewing biases is highest and rather constant in different tasks. The contribution of task dependent information is a close runner-up. Specifically, in a standardized task of judging facial expressions it scores highly. The contribution of low-level features is, on average, somewhat lower. However, in a prototypical search task, without an available template, it makes a strong contribution on par with the two other measures. Finally, the contributions of the three factors are only slightly redundant, and the semi-partial correlation coefficients are only slightly lower than the coefficients for full correlations. These data provide evidence that all three measures make significant and independent contributions and that none can be neglected in a model of human overt visual attention

    Incremental grouping of image elements in vision

    Get PDF
    One important task for the visual system is to group image elements that belong to an object and to segregate them from other objects and the background. We here present an incremental grouping theory (IGT) that addresses the role of object-based attention in perceptual grouping at a psychological level and, at the same time, outlines the mechanisms for grouping at the neurophysiological level. The IGT proposes that there are two processes for perceptual grouping. The first process is base grouping and relies on neurons that are tuned to feature conjunctions. Base grouping is fast and occurs in parallel across the visual scene, but not all possible feature conjunctions can be coded as base groupings. If there are no neurons tuned to the relevant feature conjunctions, a second process called incremental grouping comes into play. Incremental grouping is a time-consuming and capacity-limited process that requires the gradual spread of enhanced neuronal activity across the representation of an object in the visual cortex. The spread of enhanced neuronal activity corresponds to the labeling of image elements with object-based attention
    corecore