140 research outputs found
Efficient Multi-Template Learning for Structured Prediction
Conditional random field (CRF) and Structural Support Vector Machine
(Structural SVM) are two state-of-the-art methods for structured prediction
which captures the interdependencies among output variables. The success of
these methods is attributed to the fact that their discriminative models are
able to account for overlapping features on the whole input observations. These
features are usually generated by applying a given set of templates on labeled
data, but improper templates may lead to degraded performance. To alleviate
this issue, in this paper, we propose a novel multiple template learning
paradigm to learn structured prediction and the importance of each template
simultaneously, so that hundreds of arbitrary templates could be added into the
learning model without caution. This paradigm can be formulated as a special
multiple kernel learning problem with exponential number of constraints. Then
we introduce an efficient cutting plane algorithm to solve this problem in the
primal, and its convergence is presented. We also evaluate the proposed
learning paradigm on two widely-studied structured prediction tasks,
\emph{i.e.} sequence labeling and dependency parsing. Extensive experimental
results show that the proposed method outperforms CRFs and Structural SVMs due
to exploiting the importance of each template. Our complexity analysis and
empirical results also show that our proposed method is more efficient than
OnlineMKL on very sparse and high-dimensional data. We further extend this
paradigm for structured prediction using generalized -block norm
regularization with , and experiments show competitive performances when
A Feature Selection Method for Multivariate Performance Measures
Feature selection with specific multivariate performance measures is the key
to the success of many applications, such as image retrieval and text
classification. The existing feature selection methods are usually designed for
classification error. In this paper, we propose a generalized sparse
regularizer. Based on the proposed regularizer, we present a unified feature
selection framework for general loss functions. In particular, we study the
novel feature selection paradigm by optimizing multivariate performance
measures. The resultant formulation is a challenging problem for
high-dimensional data. Hence, a two-layer cutting plane algorithm is proposed
to solve this problem, and the convergence is presented. In addition, we adapt
the proposed method to optimize multivariate measures for multiple instance
learning problems. The analyses by comparing with the state-of-the-art feature
selection methods show that the proposed method is superior to others.
Extensive experiments on large-scale and high-dimensional real world datasets
show that the proposed method outperforms -SVM and SVM-RFE when choosing a
small subset of features, and achieves significantly improved performances over
SVM in terms of -score
Online Product Quantization
Approximate nearest neighbor (ANN) search has achieved great success in many
tasks. However, existing popular methods for ANN search, such as hashing and
quantization methods, are designed for static databases only. They cannot
handle well the database with data distribution evolving dynamically, due to
the high computational effort for retraining the model based on the new
database. In this paper, we address the problem by developing an online product
quantization (online PQ) model and incrementally updating the quantization
codebook that accommodates to the incoming streaming data. Moreover, to further
alleviate the issue of large scale computation for the online PQ update, we
design two budget constraints for the model to update partial PQ codebook
instead of all. We derive a loss bound which guarantees the performance of our
online PQ model. Furthermore, we develop an online PQ model over a sliding
window with both data insertion and deletion supported, to reflect the
real-time behaviour of the data. The experiments demonstrate that our online PQ
model is both time-efficient and effective for ANN search in dynamic large
scale databases compared with baseline methods and the idea of partial PQ
codebook update further reduces the update cost.Comment: To appear in IEEE Transactions on Knowledge and Data Engineering
(DOI: 10.1109/TKDE.2018.2817526
Efficient Optimization of Performance Measures by Classifier Adaptation
In practical applications, machine learning algorithms are often needed to
learn classifiers that optimize domain specific performance measures.
Previously, the research has focused on learning the needed classifier in
isolation, yet learning nonlinear classifier for nonlinear and nonsmooth
performance measures is still hard. In this paper, rather than learning the
needed classifier by optimizing specific performance measure directly, we
circumvent this problem by proposing a novel two-step approach called as CAPO,
namely to first train nonlinear auxiliary classifiers with existing learning
methods, and then to adapt auxiliary classifiers for specific performance
measures. In the first step, auxiliary classifiers can be obtained efficiently
by taking off-the-shelf learning algorithms. For the second step, we show that
the classifier adaptation problem can be reduced to a quadratic program
problem, which is similar to linear SVMperf and can be efficiently solved. By
exploiting nonlinear auxiliary classifiers, CAPO can generate nonlinear
classifier which optimizes a large variety of performance measures including
all the performance measure based on the contingency table and AUC, whilst
keeping high computational efficiency. Empirical studies show that CAPO is
effective and of high computational efficiency, and even it is more efficient
than linear SVMperf.Comment: 30 pages, 5 figures, to appear in IEEE Transactions on Pattern
Analysis and Machine Intelligence, 201
- β¦