65 research outputs found

    Linear arboricity of graphs

    Get PDF

    Abstract Preference Frameworks: a Unifying Perspective on Separability and Strong Equivalence

    Get PDF
    We introduce abstract preference frameworks to study general properties common across a variety of preference formalisms. In particular, we study strong equivalence in preference formalisms and their separability. We identify abstract postulates on preference frameworks, satisfied by most of the currently studied preference formalisms, that lead to characterizations of both properties of interest

    Linear arboricity of graphs

    Get PDF

    Reducts of propositional theories, satisfiability relations, and generalizations of semantics of logic programs

    Get PDF
    Abstract. Over the years, the stable-model semantics has gained a position of the correct (two-valued) interpretation of default negation in programs. However, for programs with aggregates (constraints), the stable-model semantics, in its broadly accepted generalization stemming from the work by Pearce, Ferraris and Lifschitz, has a competitor: the semantics proposed by Faber, Leone and Pfeifer, which seems to be essentially different. Our goal is to explain the relationship between the two semantics. Pearce, Ferraris and Lifschitz’s extension of the stable-model semantics is best viewed in the setting of arbitrary propositional theories. We propose here an extension of the Faber-Leone-Pfeifer semantics, or FLP semantics, for short, to the full propositional language, which reveals both common threads and differences between the FLP and stable-model semantics. We use our characterizations of FLP-stable models to derive corresponding results on strong equivalence and on normal forms of theories under the FLP semantics. We apply a similar approach to define supported models for arbitrary propositional theories, and to study their properties.

    Centers and centroids of unicyclic graphs

    Get PDF
    • …
    corecore