12 research outputs found

    Dynamics of semi-flexible polymer solutions in the highly entangled regime

    Full text link
    We present experimental evidence that the effective medium approximation (EMA), developed by D.C. Morse [Phys. Rev. E {\bf 63}, 031502, (2001)], provides the correct scaling law of the macroscopic plateau modulus G0∝ρ4/3Lp−1/3G^{0}\propto\rho^{4/3}L^{-1/3}_{p} (where ρ\rho is the contour length per unit volume and LpL_{p} is the persistence length) of semi-flexible polymer solutions, in the highly entangled concentration regime. Competing theories, including a self-consistent binary collision approximation (BCA), have instead predicted G0∝ρ7/5Lp−1/5G^{0}\propto\rho^{7/5}L^{-1/5}_{p}. We have tested both the EMA and BCA scaling predictions using actin filament (F-actin) solutions which permit experimental control of LpL_p independently of other parameters. A combination of passive video particle tracking microrheology and dynamic light scattering yields independent measurements of the elastic modulus GG and LpL_{p} respectively. Thus we can distinguish between the two proposed laws, in contrast to previous experimental studies, which focus on the (less discriminating) concentration functionality of GG.Comment: 4 pages, 6 figures, Phys. Rev. Lett. (accepted
    corecore