367 research outputs found

    New summation inequalities and their applications to discrete-time delay systems

    Full text link
    This paper provides new summation inequalities in both single and double forms to be used in stability analysis of discrete-time systems with time-varying delays. The potential capability of the newly derived inequalities is demonstrated by establishing less conservative stability conditions for a class of linear discrete-time systems with an interval time-varying delay in the framework of linear matrix inequalities. The effectiveness and least conservativeness of the derived stability conditions are shown by academic and practical examples.Comment: 15 pages, 01 figur

    Design of a distributed power system stabiliser

    Full text link
    A new design method for a distributed power system stabiliser for interconnected power systems is introduced in this paper. The stabiliser is of a low order, dynamic and robust. To generate the required local control signals, each local stabiliser requires information about either the rotor speed or the load angle of the other subsystems. A simple MATLAB based design algorithm is given and used on a three-machine unstable power system. The resulting stabiliser is simulated and sample results are presented.<br /

    Design of a common observer for two linear systems with unknown inputs

    Full text link
    This paper considers the design of a common linear functional observer for two linear time-invariant systems with unknown inputs. A structure for a common observer which only uses the available output information is proposed. Here, for the proposed structure, we show that the simultaneous functional observation problem of two plants is reduced to a problem of designing two observers: the first is a full-order unknown input observer of one of the two systems; the second observer is a common unknown input observer of a system comprises two-connected systems. In general, the existence conditions for the second observer are very difficult to satisfy. This paper thus concludes that it is indeed very difficult to find a common observer for two linear systems with unknown inputs.<br /

    State and input simultaneous estimation for a class of time-delay systems with uncertainties

    Full text link
    This brief addresses the problem of estimation of both the states and the unknown inputs of a class of systems that are subject to a time-varying delay in their state variables, to an unknown input, and also to an additive uncertain, nonlinear disturbance. Conditions are derived for the solvability of the design matrices of a reduced-order observer for state and input estimation, and for the stability of its dynamics. To improve computational efficiency, a delay-dependent asymptotic stability condition is then developed using the linear matrix inequality formulation. A design procedure is proposed and illustrated by a numerical example.<br /

    Stability of 2-D characteristic polynomials

    Full text link
    This paper derives some new conditions for the bivariate characteristic polynomial of an uncertain matrix to be very strict Hurwitz. The uncertainties are assumed of the structured and unstructured type. By using the two-dimensional (2-D) inverse Laplace transform, the bounds on the uncertainties are derived which will ensure that the bivariate characteristic polynomial to be very strict Hurwitz. Two numerical examples are given to illustrate the results.<br /

    On the existence and design of functional observers for linear systems

    Full text link
    Darouach [1] recently derived necessary and sufficient conditions for the existence and stability of functional observers with an order, p, equals to the dimension m of the vectors to be estimated. In general, these conditions are difficult to satisfy and when they are not, the only available option is to increase the order of the functional observers. This note presents new conditions for the existence of a general pth-order functional observer. Systematic procedures for the synthesis of reduced-order functional observers are given. A numerical example is given to illustrate the design procedures.<br /

    Design of reduced-order state/unknown input observers: a descriptor system approach

    Full text link
    This paper addresses the problem of estimating simultaneously a linear function of both the state and unknown input of linear system with unknown inputs. By adopting the descriptor system approach, the problem can be conveniently solved. Observers proposed in this paper are of low-order and do not include the derivatives of the outputs. New conditions for the existence of reduced-order observers are derived. A design procedure for the determination of the observer parameters can also be easily derived based on the derived existence conditions <br /

    Design of reduced-order observers for neutral time-delay systems

    Full text link
    This paper presents a method for the design of reduced-order observers for a class of linear time-delay systems of the neutral-type. Conditions for the existence of reduced-order observers that are capable of asymptotically estimating any given function of the state vector are derived. A step-by-step design procedure is given for the determination of the observer parameters. A numerical example is given to illustrate the design procedure.<br /
    • …
    corecore