2,417 research outputs found
Towards a Reconfigurable Sense-and-Stimulate Neural Interface Generating Biphasic Interleaved Stimulus
Published versio
Advances in Therapeutic Monitoring of Lithium in the Management of Bipolar Disorder
Since the mid-20th century, lithium continues to be prescribed as a first-line mood stabilizer for the management of bipolar disorder (BD). However, lithium has a very narrow therapeutic index, and it is crucial to carefully monitor lithium plasma levels as concentrations greater than 1.2 mmol/L are potentially toxic and can be fatal. The quantification of lithium in clinical laboratories is performed by atomic absorption spectrometry, flame emission photometry, or conventional ion-selective electrodes. All these techniques are cumbersome and require frequent blood tests with consequent discomfort which results in patients evading treatment. Furthermore, the current techniques for lithium monitoring require highly qualified personnel and expensive equipment; hence, it is crucial to develop low-cost and easy-to-use devices for decentralized monitoring of lithium. The current paper seeks to review the pertinent literature rigorously and critically with a focus on different lithium-monitoring techniques which could lead towards the development of automatic and point-of-care analytical devices for lithium determination
Recommended from our members
Review of Advances in the Measurement of Skin Hydration Based on Sensing of Optical and Electrical Tissue Properties
The presence of water in the skin is crucial for maintaining the properties and functions of the skin, in particular its outermost layer, known as the stratum corneum, which consists of a lipid barrier. External exposures can affect the skinâs hydration levels and in turn, alter its mechanical and physical properties. Monitoring these alterations in the skinâs water content can be applicable in clinical, cosmetic, athletic and personal settings. Many techniques measuring this parameter have been investigated, with electrical-based methods currently being widely used in commercial devices. Furthermore, the exploration of optical techniques to measure hydration is growing due to the outcomes observed through the penetration of light at differing levels. This paper comprehensively reviews such measurement techniques, focusing on recent experimental studies and state-of-the-art devices
Recommended from our members
A Quadruple-Sweep Bioimpedance Sensing Method for Arterial Stenosis Detection
Current carotid atherosclerosis diagnostic protocols do not feature techniques that would allow for early or frequent medical examinations, leaving a significant number of asymptomatic carotid stenosis cases undetected and often leading to strokes. The key challenge is that current diagnostics are highly operator-dependent. In this work we used idealised biological models to demonstrate a new rapid, potentially inexpensive and operator-independent diagnostic method, aimed at detecting whether a stenosis exists, rather than seeking to be accurately quantifying or localising it. An array of electrodes was used to obtain sequential bioimpedance values over the skin, through a novel scanning technique, covering an area over the artery of interest. FEM simulations, verified through in-vitro experiments on gelatine phantoms, were used to validate the method. The final results, obtained through image processing algorithms, were in the form of planar bio-impedance maps and were successful both in identifying arterial features and detecting the presence of stenoses of different sizes. The results could also be used to indicate the arteryâs relative orientation to the sensor, eliminating the need for manual alignment by a specialist operator. Therefore, this method shows promise for routine medical examination, either in primary care, or even at home, to indicate whether a patient would require further, more detailed examinations at a specialist clinic
Recommended from our members
Multi-Modal Spectroscopic Assessment of Skin Hydration
Human skin acts as a protective barrier, preserving bodily functions and regulating water loss. Disruption to the skin barrier can lead to skin conditions and diseases, emphasizing the need for skin hydration monitoring. The gold-standard sensing method for assessing skin hydration is the Corneometer, monitoring the skinâs electrical properties. It relies on measuring capacitance and has the advantage of precisely detecting a wide range of hydration levels within the skinâs superficial layer. However, measurement errors due to its front end requiring contact with the skin, combined with the bipolar configuration of the electrodes used and discrepancies due to variations in various interfering analytes, often result in significant inaccuracy and a need to perform measurements under controlled conditions. To overcome these issues, we explore the merits of a different approach to sensing electrical properties, namely, a tetrapolar bioimpedance sensing approach, with the merits of a novel optical sensing modality. Tetrapolar bioimpedance allows for the elimination of bipolar measurement errors, and optical spectroscopy allows for the identification of skin water absorption peaks at wavelengths of 970 nm and 1450 nm. Employing both electrical and optical sensing modalities through a multimodal approach enhances skin hydration measurement sensitivity and validity. This layered approach may be particularly beneficial for minimising errors, providing a more robust and comprehensive tool for skin hydration assessment. An ex vivo desorption experiment was carried out on fresh porcine skin, and an in vivo indicative case study was conducted utilising the developed optical and bioimpedance sensing devices. Expected outcomes were expressed from both techniques, with an increase in the output of the optical sensor voltage and a decrease in bioimpedance as skin hydration decreased. MLR models were employed, and the results presented strong correlations (R-squared = 0.996 and p-value = 6.45 Ă 10â21), with an enhanced outcome for hydration parameters when both modalities were combined as opposed to independently, highlighting the advantage of the multimodal sensing approach for skin hydration assessment
Test of CPT Symmetry and Quantum Mechanics with Experimental data from CPLEAR
We use fits to recent published CPLEAR data on neutral kaon decays to
and to constrain the CPT--violation parameters
appearing in a formulation of the neutral kaon system as an open
quantum-mechanical system. The obtained upper limits of the CPT--violation
parameters are approaching the range suggested by certain ideas concerning
quantum gravity.Comment: 9 pages of uuencoded postscript (includes 3 figures
New records and detailed distribution and abundance of selected arthropod species collected between 1999 and 2011 in Azorean native forests
[Background] In this contribution we present detailed distribution and abundance data for arthropod species identified during the BALA Âż Biodiversity of Arthropods from the Laurisilva of the Azores (1999-2004) and BALA2 projects (2010-2011) from 18 native forest fragments in seven of the nine Azorean islands (all excluding Graciosa and Corvo islands, which have no native forest left).[New information] Of the total 286 species identified, 81% were captured between 1999 and 2000, a period during which only 39% of all the samples were collected. On average, arthropod richness for each island increased by 10% during the time frame of these projects. The classes Arachnida, Chilopoda and Diplopoda represent the most remarkable cases of new island records, with more than 30% of the records being novelties. This study stresses the need to expand the approaches applied in these projects to other habitats in the Azores, and more importantly to other less surveyed taxonomic groups (e.g. Diptera and Hymenoptera). These steps are fundamental for getting a more accurate assessment of biodiversity in the archipelago.AMCS was supported by a Marie Curie Intra-European Fellowship (IEF 331623 âCOMMSTRUCTâ) and by a Juan de la Cierva Fellowship (IJCI-2014-19502) funded by the Spanish âMinisterio de EconomĂa y Competitividadâ.Peer Reviewe
Radiation hardness qualification of PbWO4 scintillation crystals for the CMS Electromagnetic Calorimeter
This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2010 IOPEnsuring the radiation hardness of PbWO4 crystals was one of the main priorities during the construction of the electromagnetic calorimeter of the CMS experiment at CERN. The production on an industrial scale of radiation hard crystals and their certification over a period of several years represented a difficult challenge both for CMS and for the crystal suppliers. The present article reviews the related scientific and technological problems encountered
Ernst Freund as Precursor of the Rational Study of Corporate Law
Gindis, David, Ernst Freund as Precursor of the Rational Study of Corporate Law (October 27, 2017). Journal of Institutional Economics, Forthcoming. Available at SSRN: https://ssrn.com/abstract=2905547, doi: https://dx.doi.org/10.2139/ssrn.2905547The rise of large business corporations in the late 19th century compelled many American observers to admit that the nature of the corporation had yet to be understood. Published in this context, Ernst Freund's little-known The Legal Nature of Corporations (1897) was an original attempt to come to terms with a new legal and economic reality. But it can also be described, to paraphrase Oliver Wendell Holmes, as the earliest example of the rational study of corporate law. The paper shows that Freund had the intuitions of an institutional economist, and engaged in what today would be called comparative institutional analysis. Remarkably, his argument that the corporate form secures property against insider defection and against outsiders anticipated recent work on entity shielding and capital lock-in, and can be read as an early contribution to what today would be called the theory of the firm.Peer reviewe
- âŠ