8 research outputs found
A global research priority agenda to advance public health responses to fatty liver disease
Background & aims
An estimated 38% of adults worldwide have non-alcoholic fatty liver disease (NAFLD). From individual impacts to widespread public health and economic consequences, the implications of this disease are profound. This study aimed to develop an aligned, prioritised fatty liver disease research agenda for the global health community.
Methods
Nine co-chairs drafted initial research priorities, subsequently reviewed by 40 core authors and debated during a three-day in-person meeting. Following a Delphi methodology, over two rounds, a large panel (R1 n = 344, R2 n = 288) reviewed the priorities, via Qualtrics XM, indicating agreement using a four-point Likert-scale and providing written feedback. The core group revised the draft priorities between rounds. In R2, panellists also ranked the priorities within six domains: epidemiology, models of care, treatment and care, education and awareness, patient and community perspectives, and leadership and public health policy.
Results
The consensus-built fatty liver disease research agenda encompasses 28 priorities. The mean percentage of âagreeâ responses increased from 78.3 in R1 to 81.1 in R2. Five priorities received unanimous combined agreement (âagreeâ + âsomewhat agreeâ); the remaining 23 priorities had >90% combined agreement. While all but one of the priorities exhibited at least a super-majority of agreement (>66.7% âagreeâ), 13 priorities had 90% combined agreement.
Conclusions
Adopting this multidisciplinary consensus-built research priorities agenda can deliver a step-change in addressing fatty liver disease, mitigating against its individual and societal harms and proactively altering its natural history through prevention, identification, treatment, and care. This agenda should catalyse the global health communityâs efforts to advance and accelerate responses to this widespread and fast-growing public health threat.
Impact and implications
An estimated 38% of adults and 13% of children and adolescents worldwide have fatty liver disease, making it the most prevalent liver disease in history. Despite substantial scientific progress in the past three decades, the burden continues to grow, with an urgent need to advance understanding of how to prevent, manage, and treat the disease. Through a global consensus process, a multidisciplinary group agreed on 28 research priorities covering a broad range of themes, from disease burden, treatment, and health system responses to awareness and policy. The findings have relevance for clinical and non-clinical researchers as well as funders working on fatty liver disease and non-communicable diseases more broadly, setting out a prioritised, ranked research agenda for turning the tide on this fast-growing public health threat
Discrete gait characteristics are associated with m.3243A>G and m.8344A>G variants of mitochondrial disease and its pathological consequences
Mitochondrial disease is complex and variable, making diagnosis and management challenging. The situation is complicated by lack of sensitive outcomes of disease severity, progression, contributing pathology and clinical efficacy. Gait is emerging as a sensitive marker of pathology; however, to date, no studies have quantified gait in mitochondrial disease. In this cross-sectional study, we quantified gait characteristics in 24 patients with genetically confirmed mitochondrial disease (m.3243A>G and m.8344A>G) and 24 controls. Gait was measured using an instrumented walkway according to a predefined model with five domains hypothesised to reflect independent features of the neural control of gait in mitochondrial disease, including: pace (step velocity and step length); rhythm (step time); variability (step length and step time variability); asymmetry (step time asymmetry); and postural stability (step width, step width variability and step length asymmetry). Gait characteristics were compared with respect to controls and genotype. Additional measures of disease severity, pathophysiology and imaging were also compared to gait to verify the validity of gait characteristics. Discrete gait characteristics differed between controls and mitochondrial disease groups, even in relatively mildly affected patients harbouring the m.3243A>G mutation. The pattern of gait impairment (increased variability and reduced postural control) was supported by significant associations with measures of disease severity, progression, pathophysiology and radiological evidence of cerebellar atrophy. Discrete gait characteristics may help describe functional deficits in mitochondrial disease, enhance measures of disease severity and pathology, and could be used to document treatment effects of novel therapies
Preliminary evaluation of clinician rated outcome measures in mitochondrial disease
Background: Currently there are no known cures and few effective treatments for mitochondrial disorders. It is also true there is a lack of knowledge about suitable clinician rated outcomes and how these change over time in this patient cohort.
Objective: We sought to evaluate the validity and responsiveness to change of clinician rated outcome measures in patients with m.3243A>G-related mitochondrial disease.
Methods: We assessed the six minute timed walk (6MTW), 10 meter walk / test (10MWT), Timed up and Go (TUG) and the 5 times sit to stand (5XSTS), in 18 patients (12 sedentary controls), at baseline and a subgroup of 10 control-matched patients following a 16-week structured aerobic exercise intervention program.
Results: All outcome measures assessed were valid and able to differentiate between patients and controls. Disease severity, as measured by the Newcastle Mitochondrial Disease Adult Scale, correlated with TUG (râ=â0.54, pâ=â0.020) and 10MWT (râ=â0.47, pâ=â0.050). Receiver Operating Curve analysis revealed 5XSTS to be the most responsive measure (AUC 0.931; 95% CI 0.84â 1.00) with responsiveness to change, post intervention, emulating disease burden variance.
Conclusions: The 5XSTS can be used to discriminate between mitochondrial patients and sedentary controls with high accuracy. The 10MWT and TUG may serve as suitable and clinically relevant clinician rated measures to track disease progression and assess intervention
P64 Improving clinical trials evaluation: physiological and functional correlates in mitochondrial disease
[No abstract available
P26 Can aerobic exercise improve function in patients with mitochondrial disease?
[No abstract available
The degree of hepatic steatosis associates with impaired cardiac and autonomic function
Background & Aims: Cardiovascular disease is the principle cause of death in patients with elevated liver fat unrelated to alcohol consumption, more so than liver-related morbidity and mortality. The aim of this study was to evaluate the relationship between liver fat and cardiac and autonomic function, as well as to assess how impairment in cardiac and autonomic function is influenced by metabolic risk factors. Methods: Cardiovascular and autonomic function were assessed in 96 sedentary individuals: i) non-alcoholic fatty liver disease (NAFLD) (n = 46, hepatic steatosis >5% by magnetic resonance spectroscopy), ii) Hepatic steatosis and alcohol (dual aetiology fatty liver disease [DAFLD]) (n = 16, hepatic steatosis >5%, consuming >20 g/day of alcohol) and iii) CONTROL (n = 34, no cardiac, liver or metabolic disorders, <20 g/day of alcohol). Results: Patients with NAFLD and DAFLD had significantly impaired cardiac and autonomic function when compared with controls. Diastolic variability and systolic variability (LF/HF-sBP [n/1]; 2.3 (1.7) and 2.3 (1.5) vs. 3.4 (1.5), p <0.01) were impaired in patients with NAFLD and DAFLD when compared to controls, with DAFLD individuals showing a decrease in diastolic variability relative to NAFLD patients. Hepatic steatosis and fasting glucose were negatively correlated with stroke volume index. Fibrosis stage was significantly negatively associated with mean blood pressure (r = â0.47, p = 0.02), diastolic variability (r = â0.58, p â€0.01) and systolic variability (r = â0.42, p = 0.04). Hepatic steatosis was independently associated with cardiac function (p â€0.01); TNF-α (p â€0.05) and CK-18 (p â€0.05) were independently associated with autonomic function. Conclusion: Cardiac and autonomic impairments appear to be dependent on level of liver fat, metabolic dysfunction, inflammation and fibrosis staging, and to a lesser extent alcohol intake. Interventions should be sought to moderate the excess cardiovascular risk in patients with NAFLD or DAFLD. Lay summary: Increased levels of fat in the liver impair the ability of the cardiovascular system to work properly. The amount of fat in the liver, metabolic control, inflammation and alcohol are all linked to the degree that the cardiovascular system is affected. © 2019 The Author