43 research outputs found
Neural Correlates of Auditory Processing, Learning and Memory Formation in Songbirds
Songbirds have emerged as powerful experimental models for the study of auditory processing of complex natural communication signals. Intact hearing is necessary for several behaviors in developing and adult animals including vocal learning, territorial defense, mate selection and individual recognition. These behaviors are thought to require the processing, discrimination and memorization of songs. Although much is known about the brain circuits that participate in sensorimotor (auditory-vocal) integration, especially the “songcontrol” system, less is known about the anatomical and functional organization of central auditory pathways. Here we discuss findings associated with a telencephalic auditory area known as the caudomedial nidopallium (NCM). NCM has attracted significant interest as it exhibits functional properties that may support higher order auditory functions such as stimulus discrimination and the formation of auditory memories. NCM neurons are vigorously driven by auditory stimuli. Interestingly, these responses are selective to conspecific, relative to heterospecific songs and artificial stimuli. In addition, forms of experience-dependent plasticity occur in NCM and are song-specific. Finally, recent experiments employing highthroughput quantitative proteomics suggest that complex protein regulatory pathways are engaged in NCM as a result of auditory experience. These molecular cascades are likely central to experience-associated plasticity of NCM circuitry and may be part of a network of calcium-driven molecular events that support the formation of auditory memory traces
The Mouse Primary Visual Cortex Is a Site of Production and Sensitivity to Estrogens
The classic female estrogen, 17β-estradiol (E2), has been repeatedly shown to affect the perceptual processing of visual cues. Although gonadal E2 has often been thought to influence these processes, the possibility that central visual processing may be modulated by brain-generated hormone has not been explored. Here we show that estrogen-associated circuits are highly prevalent in the mouse primary visual cortex (V1). Specifically, we cloned aromatase, a marker for estrogen-producing neurons, and the classic estrogen receptors (ERs) ERα and ERβ, as markers for estrogen-responsive neurons, and conducted a detailed expression analysis via in-situ hybridization. We found that both monocular and binocular V1 are highly enriched in aromatase- and ER-positive neurons, indicating that V1 is a site of production and sensitivity to estrogens. Using double-fluorescence in-situ hybridization, we reveal the neurochemical identity of estrogen-producing and -sensitive cells in V1, and demonstrate that they constitute a heterogeneous neuronal population. We further show that visual experience engages a large population of aromatase-positive neurons and, to a lesser extent, ER-expressing neurons, suggesting that E2 levels may be locally regulated by visual input in V1. Interestingly, acute episodes of visual experience do not affect the density or distribution of estrogen-associated circuits. Finally, we show that adult mice dark-reared from birth also exhibit normal distribution of aromatase and ERs throughout V1, suggesting that the implementation and maintenance of estrogen-associated circuits is independent of visual experience. Our findings demonstrate that the adult V1 is a site of production and sensitivity to estrogens, and suggest that locally-produced E2 may shape visual cortical processing
Bilateral Multi-Electrode Neurophysiological Recordings Coupled to Local Pharmacology in Awake Songbirds
Here we describe a protocol for bilateral multielectrode neurophysiological recordings during intracerebral pharmacological manipulations in awake songbirds. This protocol encompasses fitting adult animals with head-posts and recording chambers, and acclimating them to periods of restraint. The adaptation period is followed by bilateral penetrations of multiple electrodes to obtain acute, sensory-driven neurophysiological responses before versus during the application of pharmacological agents of interest. These local manipulations are achieved by simultaneous and restricted drug infusions carried out independently for each hemisphere. We have used this protocol to elucidate how neurotransmitter and neuroendocrine systems shape the auditory and perceptual processing of natural, learned communication signals. However, this protocol can be used to explore the neurochemical basis of sensory processing in other small vertebrates. Representative results and troubleshooting of key steps of this protocol are presented. Following the animal\u27s recovery from head-post and recording chamber implantation surgery, the length of the procedure is 2 d
Noradrenergic Modulation of Light-Driven Egr-1 Expression in the Adult Visual Cortex
Noradrenaline has been shown to modulate sensory driven responses in the primary visual cortex (V1) of a number of vertebrate species. Moreover, this neurotransmitter has been postulated to bridge neuronal activation to genomic responses in order to instruct cells in long-lasting changes in neuronal performance. Here we show that local noradrenergic receptor activation in V1 is required for experience-regulated gene expression in the mouse V1. More specifically, we demonstrate that noradrenaline used locally within V1 mediates the light-driven gene expression of egr-1, an immediate early gene implicated as a mediator of neuronal plasticity. Visually-driven egr-1 expression largely depends on the α-adrenergic receptor subtype, with a lesser involvement of the β-subtype. Our findings suggest that noradrenergic transmission regulates plasticity associated gene expression in V1 of awake mice and is well positioned to broadly integrate experience-dependent changes at the cell's membrane and the genomic machinery in neurons
Sub-unit Specific Regulation of Type-A GABAergic Receptors during Post-Natal Development of the Auditory Cortex
The GABA-A receptor has been strongly implicated in the organization and function of cortical sensory circuits in the adult mammal. In the present work, changes in the expression patterns of select GABA-A subunits were examined as a function of development. The RNA expression profiles for three subunit types were studied, α1, β2/3 and δ at four developmental time points, (p0, p15, p30 and p90). The o1, β2/3 subunits were present at birth and following a modest increase early in life; mRNA expression for these subunits were found at stable levels throughout life. The expression pattern for the δ subunit showed the most dramatic changes in the number of positive cells as a function of age. In early life, p0 through p15 expression of mRNA for the δ subunit was quite low but increased in later life, p30 and p90. Together these data suggest that much of the potential for inhibitory connectivity is laid down in the pre and early post-natal periods
Estradiol shapes auditory processing in the adult brain by regulating inhibitory transmission and plasticity-associated gene expression
Estradiol impacts a wide variety of brain processes, including sex differentiation, mood, and learning. Here we show that estradiol regulates auditory processing of acoustic signals in the vertebrate brain, more specifically in the caudomedial nidopallium (NCM), the songbird analog of the mammalian auditory association cortex. Multielectrode recordings coupled with local pharmacological manipulations in awake animals reveal that both exogenous and locally generated estradiol increase auditory-evoked activity in NCM. This enhancement in neuronal responses is mediated by suppression of local inhibitory transmission. Surprisingly, we also found that estradiol is both necessary and sufficient for the induction of multiple mitogen-activated protein kinase (MAPK)-dependent genes thought to be required for synaptic plasticity and memorization of birdsong. Specifically, we show that local blockade of estrogen receptors or aromatase activity in awake birds decrease song-induced MAPK-dependent gene expression. Infusions of estradiol in acoustically isolated birds induce transcriptional activation of these genes to levels comparable with song-stimulated animals. Our results reveal acute and rapid nongenomic functions for estradiol in central auditory physiology and suggest that such roles may be ubiquitously expressed across sensory systems. Copyright © 2009 Society for Neuroscience