100 research outputs found
Towards democratic intelligence oversight: Limits, practices, struggles
Despite its common usage, The meaning of 'democratic' in democratic intelligence oversight has rarely been spelled out. In this paper, we situate questions regarding intelligence oversight within broader debates about the meanings and practices of democracy. We argue that the literature on intelligence oversight has tended to implicitly or explicitly follow liberal and technocratic ideas of democracy, which have limited the understanding of oversight both in academia and in practice. Thus, oversight is mostly understood as an expert, institutional and partially exclusive arrangement that is supposed to strike a balance between individual freedom and collective security with the goal of establishing the legitimacy of, and trust in intelligence work in a national setting. ‘Healthy’ or ‘efficient’ democratic oversight then becomes a matter of technical expertise, non-partisanship, and the ability to guard secrets. By analysing three moments of struggle around what counts as intelligence oversight across Germany, the UK, and the USA, this paper elucidates their democratic stakes. Through a practice-based approach, we argue that oversight takes much more agonistic, contentious, transnational, and public forms. However, these democratic practices reconfiguring oversight remain contested or contained by dominant views on what constitutes legitimate and effective intelligence oversight
Speckle tracking imaging improves in vivo assessment of EPO-induced myocardial salvage early after ischemia-reperfusion in rats
A noninvasive assessment of infarct size and transmural extension of myocardial infarction (TEMI) is fundamental in experimental models of ischemia-reperfusion. Conventional echocardiography parameters are limited in this purpose. This study was designed to examine whether speckle tracking imaging can be used in a rat model of ischemia-reperfusion to accurately detect the reduction of infarct size and TEMI induced by erythropoietin (EPO) as early as 24 h after reperfusion. Rats were randomly assigned to one of three groups: myocardial infarction (MI)-control group, 45 min ischemia followed by 24 h of reperfusion; MI-EPO group, similar surgery with a single bolus of EPO administered at the onset of reperfusion; and sham-operated group. Short-axis two-dimensional echocardiography was performed after reperfusion. Global radial (GSr) and circumferential (GScir) strains were compared with infarct size and TEMI assessed after triphenyltetrazolium chloride staining. As a result, ejection fraction, shortening fraction, GSr, and GScir significantly correlated to infarct size, whereas only GSr and GScir significantly correlated to TEMI. EPO significantly decreased infarct size (30.8 ± 3.5 vs. 56.2 ± 5.7% in MI-control, P < 0.001) and TEMI (0.37 ± 0.05 vs. 0.77 ± 0.05 in MI-control, P < 0.001). None of the conventional echocardiography parameters was significantly different between the MI-EPO and MI-control groups, whereas GSr was significantly higher in the MI-EPO group (29.1 ± 4.7 vs. 16.4 ± 3.3% in MI-control; P < 0.05). Furthermore, GScir and GSr appeared to be the best parameters to identify a TEMI >0.75 24 h after reperfusion. In conclusion, these findings demonstrate the usefulness of speckle tracking imaging in the early evaluation of a cardioprotective strategy in a rat model of ischemia-reperfusion
Novel Crystalline SiO2 Nanoparticles via Annelids Bioprocessing of Agro-Industrial Wastes
The synthesis of nanoparticles silica oxide from rice husk, sugar cane bagasse and coffee husk, by employing vermicompost with annelids (Eisenia foetida) is reported. The product (humus) is calcinated and extracted to recover the crystalline nanoparticles. X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and dynamic light scattering (DLS) show that the biotransformation allows creating specific crystalline phases, since equivalent particles synthesized without biotransformation are bigger and with different crystalline structure
Krill Excretion Boosts Microbial Activity in the Southern Ocean
Antarctic krill are known to release large amounts of inorganic and organic nutrients to the water column. Here we test the role of krill excretion of dissolved products in stimulating heterotrophic bacteria on the basis of three experiments where ammonium and organic excretory products released by krill were added to bacterial assemblages, free of grazers. Our results demonstrate that the addition of krill excretion products (but not of ammonium alone), at levels expected in krill swarms, greatly stimulates bacteria resulting in an order-of-magnitude increase in growth and production. Furthermore, they suggest that bacterial growth rate in the Southern Ocean is suppressed well below their potential by resource limitation. Enhanced bacterial activity in the presence of krill, which are major sources of DOC in the Southern Ocean, would further increase recycling processes associated with krill activity, resulting in highly efficient krill-bacterial recycling that should be conducive to stimulating periods of high primary productivity in the Southern Ocean.This research is a contribution to projects ICEPOS (REN2002-04165-CO3-O2) and ATOS (POL2006-00550/CTM), funded by the Spanish Ministry of Science and Innovation
Seasonal dynamics of active SAR11 ecotypes in the oligotrophic Northwest Mediterranean Sea
A seven-year oceanographic time series in NW Mediterranean surface waters was combined with pyrosequencing of ribosomal RNA (16S rRNA) and ribosomal RNA gene copies (16S rDNA) to examine the environmental controls on SAR11 ecotype dynamics and potential activity. SAR11 diversity exhibited pronounced seasonal cycles remarkably similar to total bacterial diversity. The timing of diversity maxima was similar across narrow and broad phylogenetic clades and strongly associated with deep winter mixing. Diversity minima were associated with periods of stratification that were low in nutrients and phytoplankton biomass and characterised by intense phosphate limitation (turnover time80%) by SAR11 Ia. A partial least squares (PLS) regression model was developed that could reliably predict sequence abundances of SAR11 ecotypes (Q2=0.70) from measured environmental variables, of which mixed layer depth was quantitatively the most important. Comparison of clade-level SAR11 rRNA:rDNA signals with leucine incorporation enabled us to partially validate the use of these ratios as an in-situ activity measure. However, temporal trends in the activity of SAR11 ecotypes and their relationship to environmental variables were unclear. The strong and predictable temporal patterns observed in SAR11 sequence abundance was not linked to metabolic activity of different ecotypes at the phylogenetic and temporal resolution of our study
Some environmental factors influencing phytoplankton in the Southern Ocean around South Georgia
Data on phytoplankton and zooplankton biomass, and physical and chemical variables, are combined with a published multivariate description of diatom species composition to interpret variation within an area around South Georgia surveyed during an austral summer. Large-scale species distributions could be equated to the different water masses which reflected the interaction of the Antarctic Circumpolar Current with the island and the Scotia Ridge. Small-scale factors were found to act at an interstation scale and imposed local variation on the biogeographic pattern. Nutrient depletion could be related to phytoplankton biomass but no single inorganic nutrient of those measured (NO 3 −N, PO 4 −P and silica) could be identified as important. The ratio Si:P appeared to be more important as an ecological factor. The impact of grazing by krill and other zooplankton could only be resolved as differences in phytoplankton biomass and phaeopigment content. Diatom species composition showed a relation to local krill abundance very different from that suggested by published studies, but could be explained as the effect of earlier grazing outside the study area. The effects of vertical mixing could not account for interstation differences as pycnocline depth was uniformly greater than euphotic depth, and vertical stability very low. Some comparison was made with data collected in 1926–31 by the Discovery Investigations. Significant differences in the distribution of certain taxa such as Chaetoceros criophilum and C. socialis were traced to major differences in hydrology.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46983/1/300_2004_Article_BF00443379.pd
A new vision of ocean biogeochemistry after a decade of the Joint Global Ocean Flux Study (JGOFS)
The Joint Global Ocean Flux Study (JGOFS) has completed a decade of intensive process and time-series studies on the regional and temporal dynamics of biogeochemical processes in five diverse ocean basins. Its field program also included a global survey of dissolved inorganic carbon (DIC) in the ocean, including estimates of the exchange of carbon dioxide (CO2) between the ocean and the atmosphere, in cooperation with the World Ocean Circulation Experiment (WOCE).
This report describes the principal achievements of JGOFS in ocean observations, technology development and modelling. The study has produced a comprehensive and high-quality database of measurements of ocean biogeochemical properties. Data on temporal and spatial changes in primary production and CO2 exchange, the dynamics of of marine food webs, and the availability of micronutrients have yielded new insights into what governs ocean productivity, carbon cycling and export into the deep ocean, the set of processes collectively known as the "biological pump."
With large-scale, high-quality data sets for the partial pressure of CO2 in surface waters as well for other DIC parameters in the ocean and trace gases in the atmosphere, reliable estimates, maps and simulations of air-sea gas flux, anthropogenic carbon and inorganic carbon export are now available. JGOFS scientists have also obtained new insights into the export flux of particulate and dissolved organic carbon (POC and DOG), the variations that occur in the ratio of elements in organic matter, and the utilization and remineralization of organic matter as it falls through the ocean interior to the sediments.
JGOFS scientists have amassed long-term data on temporal variability in the exchange of CO2 between the ocean and atmosphere, ecosystem dynamics, and carbon export in the oligotrophic subtropical gyres. They have documented strong links between these variables and large-scale climate patterns such as the El Nino-Southern Oscillation (ENSO) or the North Atlantic Oscillation (NAO). An increase in the abundance of organisms that fix free nitrogen (N-2) and a shift in nutrient limitation from nitrogen to phosphorus in the subtropical North Pacific provide evidence of the effects of a decade of strong El Ninos on ecosystem structure and nutrient dynamics.
High-quality data sets, including ocean-color observations from satellites, have helped modellers make great strides in their ability to simulate the biogeochemical and physical constraints on the ocean carbon cycle and to extend their results from the local to the regional and global scales. Ocean carbon-cycle models, when coupled to atmospheric and terrestrial models, will make it possible in the future to predict ways in which land and ocean ecosystems might respond to changes in climate
Land-fast ice off Adélie Land (Antarctica): short-term variations in nutrients and chlorophyll just before ice break-up
This study focused on the short-term variations of sea ice microalgal biomass and nutrients, in Adélie Land coastal area (Antarctica). The annual land-fast ice, platelet ice-like layer (PLI) and under-lying seawater were sampled during the 1999 austral spring. The study was conducted during 33 days preceding the ice break-up, with a daily sampling when the meteorological conditions were favourable. Time-series for salinity, chlorophyll a (Chl a), NH4+, NO2−, NO3−, PO4− and Si(OH)4 are shown. We also provide satellite data and meteorological variables for the same period. During the study period, the solid ice thickness varied from 1.47 to 1.05 m. Pigments were concentrated in bottom ice, but progressively invaded the PLI. Phaeo a increased in the PLI during the last weeks, in parallel with increasing NO2− concentration. Si(OH)4, in lowest concentrations in bottom ice, increased progressively in the under-ice water (UIW) and PLI, this was because of offshore water inputs. NH4+ concentrations were high in every sea ice component (particularly in the bottom ice) and were inversely correlated to pigments in the bottom ice. NH4+ concentrations progressively increased in the PLI and underlying seawater just before the break-up. In the bottom ice, PO4− concentrations were related to high pigment concentrations, but with a short lag close to the break up period, indicating in situ regeneration. Neither NO3− nor NH4+ concentrations were exhausted in the bottom ice. NO2− and NH4+ concentrations increased in PLI and under-ice water just before the break-up period, which might indicate strong inorganic nitrogen recycling in land-fast ice. Approximately 0.4 kmol km−1 linear coast of NH4+ (1 kmol NO3− and 2 kmol PO4−) were released to the under-ice seawater during break-up, along with 0.12 tons km−1 Chl a (9.6 tons POC km−1 equivalent). These nutrient sea ice inputs to the coastal zone waters, during the ice recession and break-up, may vary annually depending upon the local meteorological conditions that control ice formation, duration of ice cover and melting
- …