13 research outputs found
Transport energy consumption in mountainous roads. A comparative case study for internal combustion engines and electric vehicles in Andorra
This paper analyses transport energy consumption of conventional and electric vehicles in mountainous roads. A standard round trip in Andorra has been modelled in order to characterise vehicle dynamics in hilly regions. Two conventional diesel vehicles and their electric-equivalent models have been simulated and their performances have been compared. Six scenarios have been simulated to study the effects of factors such as orography, traffic congestion and driving style. The European fuel consumption and emissions test and Artemis urban driving cycles, representative of European driving cycles, have also been included in the comparative analysis. The results show that road grade has a major impact on fuel economy, although it affects consumption in different levels depending on the technology analysed. Electric vehicles are less affected by this factor as opposed to conventional vehicles, increasing the potential energy savings in a hypothetical electrification of the car fleet. However, electric vehicle range in mountainous terrains is lower compared to that estimated by manufacturers, a fact that could adversely affect a massive adoption of electric cars in the short term.Peer ReviewedPostprint (author’s final draft
Typology of rural contexts in the Sudoe area: characterisation of rural territories in the Sudoe area
The COLEOPTER (COncertation LocalE pour l’Optimisation des Politiques Territoriales pour l’Energie Rurale) project develops an integrated approach to the energy efficiency of public buildings that links technical, social and economic challenges. COLEOPTER addresses two energy efficiency challenges in buildings: difficulties for rural municipalities to act and carry out work despite the positive local impact (i.e., energy savings and local employment) and a lack of awareness of building challenges, which leads to irrational use of energy and low renovation rates.The COLEOPTER project (SOE3/P3/F0951) is financed by the Interreg Sudoe Programme that supports regional development in Southern Europe, financing transnational projects through the European Regional Development Fund.Preprin
Guide of references for water-energy renovation and construction in the Sudoe area: characterisation of rural territories in the Sudoe area
The COLEOPTER (COncertation LocalE pour l’Optimisation des Politiques Territoriales pour l’Energie Rurale) project develops an integrated approach to the energy efficiency of public buildings that links technical, social and economic challenges. COLEOPTER addresses two energy efficiency challenges in buildings: difficulties for rural municipalities to act and carry out work despite the positive local impact (i.e., energy savings and local employment) and a lack of awareness of building challenges, which leads to irrational use of energy/water and low renovation rates.The COLEOPTER project (SOE3/P3/F0951) is financed by the Interreg Sudoe Programme that supports regional development in Southern Europe, financing transnational projects through the European Regional Development Fund.Preprin
Transport energy demand in Andorra. Assessing private car futures through sensitivity and scenario analysis
This paper presents a model which estimates current car fleet energy consumption in Andorra and forecasts such consumption as a reference scenario. The base-year model is built through a bottom-up methodology using vehicle registration and technical inspection data. The model forecasts energy consumption up to 2050, taking into account the fleet structure, the car survival profile, trends in activity of the various car categories, and the fuel price and income elasticities that affect car stock and total fleet activity. It provides an initial estimate of private car energy demand in Andorra and charts a baseline scenario that describes a hypothetical future based on historical trends. A local sensitivity analysis is conducted to determine the most sensitive input parameters and study the effect of its variability. In addition, the scenario analysis explores the most uncertain future aspects which can cause important variability in the results with respect to the Reference scenario and provides a broad estimate of potential energy savings related to different policy strategiesPeer ReviewedPostprint (author's final draft
Transport energy demand in Andorra. Assessing private car futures through sensitivity and scenario analysis
This paper builds a model to estimate current car fleet energy consumption in Andorra and forecasts such consumption as a reference scenario. It shows how a useful modelling tool can be developed and applied in the absence of significant data. The base-year model is built through a bottom-up methodology using vehicle registration and technical inspection data. The model forecasts energy consumption up to 2050, taking into account the fleet structure, the car survival profile, trends in activity of the various car categories, and the fuel price and income elasticities that affect car stock and total fleet activity. It provides an initial estimate of private car energy demand in Andorra and charts a baseline scenario that describes a hypothetical future based on historical trends. A local sensitivity analysis is conducted to determine the most sensitive input parameters and study the effect of its variability. In addition, four scenarios are built to represent the largest expected variability in the results with respect to the reference scenario and provide a broad estimate of potential energy savings related to different policy strategiesPreprin
Rumo à auto-suficiência energética nas cidades: análise do potencial solar fotovoltaico à escala urbana no Principado de Andorra
INTRODUCCIĂ“N. Una parte importante de paĂses y ciudades se han comprometido a la neutralidad de carbono en 2050. Incluso algunos van más allá y hablan de autosuficiencia energĂ©tica en las ciudades. Ante estos retos mayĂşsculos, las energĂas renovables se presentan como una de las opciones principales a tener en cuenta. Conocer su potencial a gran escala es el primer paso para conseguir una implantaciĂłn masiva.
OBJETIVO. Este artĂculo describe un caso de estudio en el que se analiza el potencial de generaciĂłn elĂ©ctrica a escala de paĂs mediante sistemas fotovoltaicos instalados en los tejados de los edificios.
MÉTODO. Para ello se utiliza una metodologĂa que combina Sistemas de InformaciĂłn Geográfica (SIG) y datos LiDAR (Lighting Detection And Ranging).
RESULTADOS. Los resultados muestran que, con la instalaciĂłn de sistemas fotovoltaicos en prácticamente la totalidad de los edificios del paĂs, se cubrirĂa el 48% de la demanda elĂ©ctrica actual.
DISCUSIĂ“N Y CONCLUSIONES. A pesar de que el potencial estimado es significativo, una reflexiĂłn profunda sobre los resultados lleva a pensar que la autosuficiencia energĂ©tica en un contexto urbano es difĂcilmente viable. De todas maneras, análisis como el presentado en este estudio son de vital importancia para dar apoyo a la definiciĂłn de polĂticas que conduzcan a paĂses y ciudades a cumplir con sus objetivos en materia energĂ©tica y de cambio climático.Los autores agradecen a la Oficina de la EnergĂa y del Cambio Climático de Andorra y al Departamento de CartografĂa del Gobierno de Andorra haber proporcionado la cartografĂa, los datos histĂłricos de producciĂłn fotovoltaica y los datos LiDAR imprescindibles para la realizaciĂłn de este estudio.Postprint (published version
Modelização energética do parque imobiliário à escala urbana: inquéritos como complemento dos dados cadastrais na fase de caracterização
INTRODUCCIÓN. La falta de información detallada sobre las propiedades que afectan al comportamiento energético de los edificios es uno de los principales obstáculos a la hora de realizar modelos energéticos del parque edificado. Esta falta de datos es uno de los motivos por el que estos modelos pueden presentar un importante desajuste entre el consumo energético estimado por los modelos, y el consumo energético real, lo que puede reducir su fiabilidad.
OBJETIVO. El presente trabajo presenta un caso de estudio en el cual se ha recopilado parte de la informaciĂłn no disponible de los edificios con el objetivo de reducir la brecha entre los resultados de las simulaciones y el consumo real.
MÉTODO. Para ello se ha diseñado una encuesta que ha permitido recopilar la información necesaria para la generación de un modelo del parque edificado de la parroquia de Escaldes-Engordany en el Principado de Andorra.
RESULTADOS. Los resultados muestran que las encuestas tienen un gran potencial para completar la informaciĂłn existente relacionada con los edificios.
DISCUSIĂ“N Y CONCLUSIONES. A pesar de su potencial, la recogida de informaciĂłn mediante encuestas tambiĂ©n tiene ciertas particularidades que pueden variar significativamente los resultados obtenidos a partir de estas.Este trabajo ha sido posible gracias a la colaboraciĂłn del Observatori de la Sostenibilitat d’Andorra (UPC), y la Universitat Politècnica de Catalunya (UPC) en el marco del proyecto de investigaciĂłn BIA2016-77675-R concedido por el Ministerio de EconomĂa y Competitividad (MINECO) del Gobierno de España, y el Centre de Recerca Sociològica del Institut d’Estudis Andorrans (CRES-IEA). La autora Patricia Borges, agradece al Gobierno de Andorra la ayuda de tercer ciclo, ATC021-AND-2018/2019, 2019/2020.Postprint (published version
Transport energy demand in Andorra. Assessing private car futures through sensitivity and scenario analysis
This paper builds a model to estimate current car fleet energy consumption in Andorra and forecasts such consumption as a reference scenario. It shows how a useful modelling tool can be developed and applied in the absence of significant data. The base-year model is built through a bottom-up methodology using vehicle registration and technical inspection data. The model forecasts energy consumption up to 2050, taking into account the fleet structure, the car survival profile, trends in activity of the various car categories, and the fuel price and income elasticities that affect car stock and total fleet activity. It provides an initial estimate of private car energy demand in Andorra and charts a baseline scenario that describes a hypothetical future based on historical trends. A local sensitivity analysis is conducted to determine the most sensitive input parameters and study the effect of its variability. In addition, four scenarios are built to represent the largest expected variability in the results with respect to the reference scenario and provide a broad estimate of potential energy savings related to different policy strategie
Transport energy demand in Andorra. Assessing private car futures through sensitivity and scenario analysis
This paper presents a model which estimates current car fleet energy consumption in Andorra and forecasts such consumption as a reference scenario. The base-year model is built through a bottom-up methodology using vehicle registration and technical inspection data. The model forecasts energy consumption up to 2050, taking into account the fleet structure, the car survival profile, trends in activity of the various car categories, and the fuel price and income elasticities that affect car stock and total fleet activity. It provides an initial estimate of private car energy demand in Andorra and charts a baseline scenario that describes a hypothetical future based on historical trends. A local sensitivity analysis is conducted to determine the most sensitive input parameters and study the effect of its variability. In addition, the scenario analysis explores the most uncertain future aspects which can cause important variability in the results with respect to the Reference scenario and provides a broad estimate of potential energy savings related to different policy strategiesPeer Reviewe
Planning Freight Delivery Routes in Mountainous Regions
International audienceThe planning of delivery routes in mountainous areas should pay attention to the fact that certain types of vehicles (such as large trucks) may be unable to reach some customers. The use of heterogeneous fleet is then a must. Moreover, the costs of a given route may be very different depending on the sense taken. The site-dependent capacitated vehicle routing problem with heterogeneous fleet and asymmetric costs is solved with the successive approximations method. The solution methodology proposed is tested on a set of benchmark instances. Preliminary tests carried out show the benefits, in terms of total costs, when using a heterogeneous fleet. In both cases, with and without site dependency, the increase in distance-based costs is mitigated by the use of heterogeneous fleet