28 research outputs found
Structure and composition of Fe-OM co-precipitates that form in soil-derived solutions
Iron oxides represent a substantial fraction of secondary minerals and particularly affect the reactive properties of natural systems in which they formed, e.g. in soils and sediments. Yet, it is still obscure how transient conditions in the solution will affect the properties of in situ precipitated Fe oxides. Transient compositions, i.e. compositions that change with time, arise due to predominant non-equilibrium states in natural systems, e.g. between liquid and solid phases in soils. In this study, we characterize Fe-OM co-precipitates that formed in pH-neutral exfiltrates from anoxic topsoils under transient conditions. We applied soil column outflow experiments, in which Fe2+was discharged with the effluent from anoxic soil and subsequently oxidized in the effluent due to contact with air. Our study features three novel aspects being unconsidered so far: i) the transient composition of soil-derived solutions, ii) that pedogenic Fe oxides instead of Fe salts serve as major source for Fe2+ in soil solution and iii) the presence of exclusively soil-derived organic and inorganic compounds during precipitation. The experiments were carried out with two topsoil materials that differed in composition, texture and land use. Derived from Mössbauer spectroscopy, broad distributions in quadrupole splittings (0 - 2 mm s-1) and magnetic hyperfine fields (35 - 53 T) indicated the presence of low-crystalline ferrihydrite and even lower crystalline Fe phases in all Fe-OM co-precipitates. There was no unequivocal evidence for other Fe oxides, i.e. lepidocrocite and (nano)goethite. The Fe-OM co-precipitates contained inorganic (P, sulfate, silicate, Al, As) and organic compounds (proteins, polysaccharides), which were concurrently discharged from the soils. Their content in the Fe-OM co-precipitates was controlled by their respective concentration in the soil-derived solution. On a molar basis, OC and Fe were the main components in the Fe-OM co-precipitates (OC/Fe ratio = 0.5 - 2). The elemental composition of the Fe-OM co-precipitates was in accordance with the sequential precipitation of Fe(III)phosphates/arsenates prior to the formation of ferrihydrite. This explains decreasing Si contents in the Fe-OM co-precipitates with increasing availability of P. With respect to constant mean quadrupole splittings and slightly decreasing mean magnetic hyperfine fields, increasing contents of OC, P and Al in the Fe-OM co-precipitates did not further increase the structural disorder of the Fe polyhedra, while the crystallite interactions slightly decreased. Scanning electron microscopy and dynamic light scattering revealed the coincidental presence of variably sized aggregates and a considerable amount of Fe-OM co-precipitates, which remained dispersed in solution for months. Thus, variably composed Fe-OM co-precipitates with highly diverse aggregate sizes and comparably constant poor crystallinity can be expected after the oxidation of Fe2+ in transient, soil-derived solutions
Citrate influences microbial Fe hydroxide reduction via a dissolution-disaggregation mechanism
Microbial reduction of ferric iron is partly dependent on Fe hydroxide particle size. Nanosized Fe hydroxides greatly exceed the bioavailability of their counterparts larger than 1 μm. Citrate as a low molecular weight organic acid can likewise stabilize colloidal suspensions against aggregation by electrostatic repulsion but also increase Fe bioavailability by enhancing Fe hydroxide solubility. The aim of this study was to see whether adsorption of citrate onto surfaces of large ferrihydrite aggregates results in the formation of a stable colloidal suspension by electrostatic repulsion and how this effect influences microbial Fe reduction. Furthermore, we wanted to discriminate between citrate-mediated colloid stabilization out of larger aggregates and ferrihydrite dissolution and their influence on microbial Fe hydroxide reduction. Dissolution kinetics of ferrihydrite aggregates induced by different concentrations of citrate and humic acids were compared to microbial reduction kinetics with Geobacter sulfurreducens. Dynamic light scattering results showed the formation of a stable colloidal suspension and colloids with hydrodynamic diameters of 69 (± 37) to 165 (± 65) nm for molar citrate:Fe ratios of 0.1 to 0.5 and partial dissolution of ferrihydrite at citrate:Fe ratios ≥ 0.1. No dissolution or colloid stabilization was detected in the presence of humic acids. Adsorption of citrate, necessary for dissolution, reversed the surface charge and led to electrostatic repulsion between sub-aggregates of ferrihydrite and colloid stabilization when the citrate:Fe ratio was above a critical value (≤ 0.1). Lower ratios resulted in stronger ferrihydrite aggregation instead of formation of a stable colloidal suspension, owing to neutralization of the positive surface charge. At the same time, microbial ferrihydrite reduction increased from 0.029 to 0.184 mM h-1 indicating that colloids stabilized by citrate addition enhanced microbial Fe reduction. Modelling of abiotic dissolution kinetics revealed that colloid stabilization was most pronounced at citrate:Fe ratios of 0.1 – 0.5, whereas higher ratios led to enhanced dissolution of both colloidal and larger aggregated fractions. Mathematical simulation of the microbial reduction kinetics under consideration of partial dissolution and colloid stabilization showed that the bioaccessibility increases in the order large aggregates < stable colloids < Fe-citrate. These findings indicate that much of the organic acid driven mobilization of Fe oxy(hydr)oxides is most likely due to colloid formation and stabilization rather than solubilisation
Depth-differentiated, multivariate control of biopore number under different land-use practices
Earthworms and (tap-)roots impact the soil structure by creating large biopores, affecting infiltration capacity, seepage, nutrient cycling, and soil aeration. Despite the importance of biopores for the functions of soils and the fact that several hundreds of biopores >2 mm in diameter may occur on one square meter of soil, knowledge on the interdependence of soil properties, land-use intensity, and biopore number is still rudimentary. In this study, we investigate the linkage of the number of biopores (>2 mm i.d.) with the earthworm community, root biomass, and soil properties, including pH, water content, soil organic carbon (SOC), as well as the land-use intensity (pasture vs. cropland) as a function of the soil depth (15, 30 and 50 cm). Hypothesized causal relationships among these factors were analyzed by piecewise structural equation modelling (SEM). We found various and novel linkages between roots, earthworms, biopores, and soil properties depending on soil depth. In topsoil (at 15 cm depth), roots directly affected the number of small-sized biopores, and anecic earthworms were related to medium-sized biopores. These effects diminished with depth. We identified land-use intensity as the factor preponderating the relations between biopores, root biomass, and earthworm number in the topsoil horizons, thereby masking other interactions among variables. This appeared as high multicollinearity among variables in the SEM of the topsoil. Land-use intensity effects were found to impact the whole soil profile but decreased with soil depth. To further elucidate the single effects of soil properties on biopore-forming biota and number of biopores in the topsoil, we excluded land-use intensity as a variable in subsequent analyses. Biopores increased with soil pH and soil water content but decreased with increasing SOC. Based on our SEM analysis, we conclude that the occurrence, frequency, and persistence of biopores are the consequence of intricate interdependencies between earthworm communities, roots, and site-specific soil properties, governed by land-use intensity
Why do inverse models disagree? A case study with two European CO2 inversions
We present an analysis of atmospheric transport impact on estimating CO2 fluxes using two atmospheric inversion systems (CarboScope-Regional (CSR) and Lund University Modular Inversion Algorithm (LUMIA)) over Europe in 2018. The main focus of this study is to quantify the dominant drivers of spread amid CO2 estimates derived from atmospheric tracer inversions. The Lagrangian transport models STILT (Stochastic Time-Inverted Lagrangian Transport) and FLEXPART (FLEXible PARTicle) were used to assess the impact of mesoscale transport. The impact of lateral boundary conditions for CO2 was assessed by using two different estimates from the global inversion systems CarboScope (TM3) and TM5-4DVAR. CO2 estimates calculated with an ensemble of eight inversions differing in the regional and global transport models, as well as the inversion systems, show a relatively large spread for the annual fluxes, ranging between −0.72 and 0.20 PgC yr−1, which is larger than the a priori uncertainty of 0.47 PgC yr−1. The discrepancies in annual budget are primarily caused by differences in the mesoscale transport model (0.51 PgC yr−1), in comparison with 0.23 and 0.10 PgC yr−1 that resulted from the far-field contributions and the inversion systems, respectively. Additionally, varying the mesoscale transport caused large discrepancies in spatial and temporal patterns, while changing the lateral boundary conditions led to more homogeneous spatial and temporal impact. We further investigated the origin of the discrepancies between transport models. The meteorological forcing parameters (forecasts versus reanalysis obtained from ECMWF data products) used to drive the transport models are responsible for a small part of the differences in CO2 estimates, but the largest impact seems to come from the transport model schemes. Although a good convergence in the differences between the inversion systems was achieved by applying a strict protocol of using identical prior fluxes and atmospheric datasets, there was a non-negligible impact arising from applying a different inversion system. Specifically, the choice of prior error structure accounted for a large part of system-to-system differences.</p
Process sequence of soil aggregate formation disentangled through multi-isotope labelling
Microaggregates (250 µm) that resisted 60 J mL−1 ultrasonic dispersion. Afterwards, we assessed the C, N, Fe, and Si stable isotope composition in each size fraction. After four weeks we found a rapid build-up of stable macroaggregates comprising almost 50 % of soil mass in the treatment with plants and respective soil rooting, but only 5 % when plants were absent. The formation of these stable macroaggregates proceeded with time. Soil organic carbon (SOC) contents were elevated by 15 % in the large macroaggregates induced by plant growth. However, the recovery of EPS-derived 13C was below 20 % after 4 weeks, indicating rapid turnover in treatments both with and without plants. The remaining EPS-derived C was mainly found in macroaggregates when plants were present and in the occluded small microaggregates (<20 µm) when plants were absent. The excess of bacterial 15N closely followed the pattern of EPS-derived 13C (R2 = 0.72). In contrast to the organic gluing agents, the goethite-57Fe and montmorillonite-29Si were relatively equally distributed across all size fractions. Overall, microaggregates were formed within weeks. Roots enforced this process by stabilizing microaggregates within stable macroaggregates. As time proceeded the labelled organic components decomposed, while the labelled secondary oxides and clay minerals increasingly contributed to aggregate stabilization and turnover at the scale of months and beyond. Consequently, the well-known hierarchical organization of aggregation follows a clear chronological sequence of stabilization and turnover processes
Architecture of soil microaggregates: Advanced methodologies to explore properties and functions
The functions of soils are intimately linked to their three-dimensional pore space and the associated biogeochemical interfaces, mirrored in the complex structure that developed during pedogenesis. Under stress overload, soil disintegrates into smaller compound structures, conventionally named aggregates. Microaggregates (<250 µm) are recognized as the most stable soil structural units. They are built of mineral, organic, and biotic materials, provide habitats for a vast diversity of microorganisms, and are closely involved in the cycling of matter and energy. However, exploring the architecture of soil microaggregates and their linkage to soil functions remains a challenging but demanding scientific endeavor. With the advent of complementary spectromicroscopic and tomographic techniques, we can now assess and visualize the size, composition, and porosity of microaggregates and the spatial arrangement of their interior building units. Their combinations with advanced experimental pedology, multi-isotope labeling experiments, and computational approaches pave the way to investigate microaggregate turnover and stability, explore their role in element cycling, and unravel the intricate linkage between structure and function. However, spectromicroscopic techniques operate at different scales and resolutions, and have specific requirements for sample preparation and microaggregate isolation; hence, special attention must be paid to both the separation of microaggregates in a reproducible manner and the synopsis of the geography of information that originates from the diverse complementary instrumental techniques. The latter calls for further development of strategies for synlocation and synscaling beyond the present state of correlative analysis. Here, we present examples of recent scientific progress and review both options and challenges of the joint application of cutting-edge techniques to achieve a sophisticated picture of the properties and functions of soil microaggregates
Characterisation of Andosols from Laacher See tephra by wet-chemical and spectroscopic techniques (FTIR, Al-27-, Si-29-NMR)
At 12,900 a BP, the eruption of the Laacher See volcano generated a new parent material for Holocene soil formation in parts of Western Germany. Weathering of these ashes commonly includes the formation of poorly crystalline minerals such as allophane, imogolite and ferrihydrite. Detection of these minerals in soil is difficult, yet an important task, because they may govern soil functions and processes, e. g., stabilisation of organic matter and nutrient availability. Therefore, we characterised three forested Andosols by a combination of wet-chemical and spectroscopic techniques including infrared and (Al-27, Si-29) nuclear magnetic resonance (NMR) spectroscopy together with X-ray diffractometry. Deconvoluting the Si-29-NMR spectra revealed that 1.6 to 10.4% of total Si was present as allophanic compounds, which coincided with the amounts of oxalate-extractable Si. Since extraction methods are not completely selective, we observed a slight overestimation of allophanic Si estimated from oxalate extraction. Although the sites under study are located close to each other in similar relief positions and with similar vegetation, the combination of our results revealed varying amounts of loess in the parent materials and varying weathering intensity. High weathering intensities correlate with the amounts of allophane. (C) 2013 Elsevier B. V. All rights reserved