13,657 research outputs found

    Anatomy of Soft Tissues of the Spinal Canal

    Get PDF
    Background and Objectives. Important issues regarding the spread of solutions in the epidural space and the anatomy of the site of action of spinal and epidural injections are unresolved. However, the detailed anatomy of the spinal canal has been incompletely determined. We therefore examined the microscopic anatomy of the spinal canal soft tissues, including relationships to the canal walls. Methods. Whole mounts were prepared of decalcified vertebral columns with undisturbed contents from three adult humans. Similar material was prepared from a macaque and baboon immediately on death to control for artifact of tissue change after death. Other tissues examined included nerve root and proximal spinal nerve complex and dorsal epidural fat obtained during surgery. Slides were examined by light microscopy at magnifications of 10-40×. Results. There is no fibrous tissue in the epidural space. The epidural fat is composed of uniform cells enclosed in a fine membrane. The dorsal fat is only attached to the canal wall in the dorsal midline and is often tenuously attached to the dura. The dura is joined to the canal wall only ventrally at the discs. Veins are evident predominantly in the ventral epidural space. Nerve roots are composed of multiple fascicles which disperse as they approach the dorsal root ganglion. An envelope of arachnoid encloses the roots near the site of exit from the dura. Conclusions. These features of the fat explain its semifluid consistency. Lack of substantial attachments to the dura facilitate movement of the dura relative to the canal wall and allow distribution of injected solution. Fibrous barriers are an unlikely explanation for asymmetric epidural anesthesia, but the midline fat could impede solution spread. Details of nerve-root structure and their envelope of pia-arachnoid membrane may be relevant to anesthetic action

    An Evaluation of The Host Response to An Interspinous Process Device Based on A Series of Spine Explants: Device for Intervertebral Assisted Motion (DIAM®)

    Get PDF
    Background: The objective of this study was to evaluate the host response to an interspinous process device [Device for Intervertebral Assisted Motion (DIAM®)] based on a series of nine spine explants with a mean post-operative explant time of 35 months. Methods: Explanted periprosthetic tissues were processed for histology and stained with H&E, Wright-Giemsa stain, and Oil Red O. Brightfield and polarized light microscopy were used to evaluate the host response to the device and the resultant particulate debris. The host response was graded per ASTM F981-04. Quantitative histomorphometry was used to characterize particle size, shape, and area per ASTM F1877-05. The presence or absence of bone resorption was also evaluated when bony tissue samples were provided. Results: Periprosthetic tissues demonstrated a non-specific foreign body response composed of macrophages and foreign body giant cells to the DIAM® device in most of the accessions. The foreign body reaction was not the stated reason for explantation in any of the accessions. Per ASTM F981-04, a “very slight” to “mild” to “moderate” chronic inflammatory response was observed to the biomaterials and particulate, and this varied by tissue sample and accession. Particle sizes were consistent amongst the explant patients with mean particle size on the order of several microns. Osteolysis, signs of toxicity, necrosis, an immune response, and/or device related infection were not observed. Conclusions: Cyclic loading of the spine can cause wear in dynamic stabilization systems such as DIAM®. The fabric nature of the DIAM® device’s polyethylene terephthalate jacket coupled with the generation of polymeric particulate debris predisposes the device to a foreign body reaction consisting of macrophages and foreign body giant cells. Although not all patients are aware of symptoms associated with a foreign body reaction to a deeply implanted device, surgeons should be aware of the host response to this device

    HARM: A Numerical Scheme for General Relativistic Magnetohydrodynamics

    Get PDF
    We describe a conservative, shock-capturing scheme for evolving the equations of general relativistic magnetohydrodynamics. The fluxes are calculated using the Harten, Lax, and van Leer scheme. A variant of constrained transport, proposed earlier by T\'oth, is used to maintain a divergence free magnetic field. Only the covariant form of the metric in a coordinate basis is required to specify the geometry. We describe code performance on a full suite of test problems in both special and general relativity. On smooth flows we show that it converges at second order. We conclude by showing some results from the evolution of a magnetized torus near a rotating black hole.Comment: 38 pages, 18 figures, submitted to Ap

    Modelling nematohydrodynamics in liquid crystal devices

    Full text link
    We formulate a lattice Boltzmann algorithm which solves the hydrodynamic equations of motion for nematic liquid crystals. The applicability of the approach is demonstrated by presenting results for two liquid crystal devices where flow has an important role to play in the switching.Comment: 6 pages including 5 figure

    Explant Analysis of Total Disc Replacement

    Get PDF
    Explant analysis of human disc prostheses allow early evaluation of the host response to the prosthesis and the response of the prosthesis from the host. Furthermore, early predictions of failure and wear can be obtained. Thus far, about 2-3% of disc prostheses have been removed. Observed wear patterns are similar to that of appendicular prostheses including abrasions/scratching, burnishing, surface deformation, fatigue, and embedded debris. Chemically the polymeric components have shown little degradation in short-term implantation. In metal on metal prostheses the histologic responses consist of large numbers of metallic particles with occasional macrophages and giant cells. Only rare cases of significant inflammatory response from polymeric debris have been seen

    Hybrid A/D converter for 200 deg C operation

    Get PDF
    A 12 bit A/D converter was designed and developed which will operate at 200 C with .05 linearity, 1/accuracy, 350 WSec conversion time, and only 455 mW power consumption. This product also necessitated the development of a unique three metal system in which aluminum wire bonding is done utilizing aluminum bonding pads, gold wire bonding to all gold areas, and employment of a nickel interface between gold and aluminum connections. This system totally eliminates the formation of a intermetallics at the bonding interface which can lead to bond failure. This product represents an advancement in electronics as it proved the operation of integrated circuits at high temperature, as well as providing information about both the electrical and mechanical reliability of hybrid circuits at 200 C

    Early Term Effects of rhBMP-2 on Pedicle Screw Fixation in a Sheep Model: Histomorphometric and Biomechanical Analyses

    Get PDF
    Background: The effects of recombinant human bone morphogenetic protein-2 (rhBMP-2) on pedicle screw pullout force and its potential to improve spinal fixation have not previously been investigated. rhBMP-2 on an absorbable collagen sponge (ACS) carrier was delivered in and around cannulated and fenestrated pedicle screws in a sheep lumbar spine instability model. Two control groups (empty screw and ACS with buffer) were also evaluated. We hypothesized that rhBMP-2 could stimulate bone growth in and around the cannulated and fenestrated pedicle screws to improve early bone purchase. Methods: Eight skeletally mature sheep underwent destabilizing laminectomies at L2–L3 and L4–L5 followed by stabilization with pedicle screw and rod constructs. An ACS carrier was used to deliver 0.15 mg of rhBMP-2 within and around the cannulated and fenestrated titanium pedicle screws. Biomechanics and histomorphometry were used to evaluate the early term results at 6 and 12 postoperative weeks. Results: rhBMP-2 was unable to improve bony purchase of the cannulated and fenestrated pedicle screws compared to both control groups. Although rhBMP-2 groups had pullout forces that were less than both control groups, both rhBMP-2 groups had pullout force values exceeding 2,000 N, which was comparable to previously published results for unmodified pedicle screws. Significant differences in the percentages of bone in peri-screw tissues was not observed amongst the four treatment groups. Microradiography and quantitative histomorphometry showed that at 6 weeks, rhBMP-2 induced peri-screw remodeling regions containing peri-implant bone which was hypodense with respect to surrounding native trabeculae. A moderate correlation between biomechanical pullout variables and histomorphometry data was observed. Conclusions: The design of the cannulated and fenestrated pedicle screw was able to facilitate new bone formation to achieve high pullout forces. However, delivery of rhBMP-2 should be carefully controlled to prevent excessive bone remodeling which could cause early screw loosening

    The Twist of the Draped Interstellar Magnetic Field Ahead of the Heliopause: A Magnetic Reconnection Driven Rotational Discontinuity

    Full text link
    Based on the difference between the orientation of the interstellar BISMB_{ISM} and the solar magnetic fields, there was an expectation that the magnetic field direction would rotate dramatically across the heliopause (HP). However, the Voyager 1 spacecraft measured very little rotation across the HP. Previously we showed that the BISMB_{ISM} twists as it approaches the HP and acquires a strong T component (East-West). Here we establish that reconnection in the eastern flank of the heliosphere is responsible for the twist. On the eastern flank the solar magnetic field has twisted into the positive N direction and reconnects with the Southward pointing component of the BISMB_{ISM}. Reconnection drives a rotational discontinuity (RD) that twists the BISMB_{ISM} into the -T direction and propagates upstream in the interstellar medium towards the nose. The consequence is that the N component of BISMB_{ISM} is reduced in a finite width band upstream of the HP. Voyager 1 currently measures angles (δ=sin1(BN/B)\delta=sin^{-1}(B_{N}/B)) close to solar values. We present MHD simulations to support this scenario, suppressing reconnection in the nose region while allowing it in the flanks, consistent with recent ideas about reconnection suppression from diamagnetic drifts. The jump in plasma β\beta (the plasma to magnetic pressure) across the nose of HP is much greater than in the flanks because the heliosheath β\beta is greater there than in the flanks. Large-scale reconnection is therefore suppressed in the nose but not at the flanks. Simulation data suggest that BISMB_{ISM} will return to its pristine value 1015 AU10-15~AU past the HP.Comment: 19 pages, 5 figures, submitte
    corecore