12,056 research outputs found

    The intermediate age open cluster NGC 2660

    Full text link
    We present CCD UBVI photometry of the intermediate old open cluster NGC2660, covering from the red giants region to about seven magnitudes below the main sequence turn-off. Using the synthetic Colour - Magnitude Diagram method, we estimate in a self-consistent way values for distance modulus ((m-M)0 ~= 12.2), reddening (E(B-V) ~= 0.40), metallicity ([Fe/H] about solar), and age (age ~ 1 Gyr). A 30% population of binary stars turns out to be probably present.Comment: 12 pages, 8 (encapsulated) figures, to be published on MNRA

    Detection of t(7;12)(q36;p13) in paediatric leukaemia using dual colour fluorescence in situ hybridisation

    Get PDF
    The identification of chromosomal rearrangements is of utmost importance for the diagnosis and classification of specific leukaemia subtypes and therefore has an impact on therapy choices in individual cases. The t(7;12)(q36;p13) is a cryptic rearrangement that is difficult to recognise using conventional cytogenetic methods and is often undetected by reverse transcription polymerase chain reaction due to the absence of a fusion transcript in many cases. Here we present a reliable and easy to use dual colour fluorescence in situ hybridisation assay for the detection of the t(7;12)(q36;p13) rearrangement. A comparison with previous similar work is given and advantages and limitations of this novel approach are discussed

    Galactic Evolution Of D And 3He Including Stellar Production Of 3He

    Get PDF
    New stellar models which track the production and destruction of 3^3He (and D) have been evolved for a range of stellar masses (0.65M/M100)(0.65\leq M/M_{\odot}\leq 100), metallicities (0.01Z/Z1)(0.01 \leq Z/Z_{\odot} \leq 1) and initial (main sequence) 3^3He mass fractions (105X3,MS103)(10^{-5} \leq X_{3,MS} \leq 10^{-3}). Armed with the 3^3He yields from these stellar models we have followed the evolution of D and 3^3He using a variety of chemical evolution models with and without infall of primordial or processed material. Production of new 3^3He by the lower mass stars overwhelms any reasonable primordial contributions and leads to predicted abundances in the presolar nebula and/or the present interstellar medium in excess of the observationally inferred values. This result, which obtains even for zero primordial D and 3^3He, and was anticipated by Rood, Steigman \& Tinsley (1976), is insensitive to the choice of chemical evolution model; it is driven by the large 3^3He yields from low mass stars. In an attempt to ameliorate this problem we have considered a number of non-standard models in which the yields from low mass stars have been modified. Although several of these non-standard models may be consistent with the 3^3He data, they may be inconsistent with observations of 12^{12}C/13^{13}C, 18^{18}O and, most seriously, the super-3^3He rich planetary nebulae (Rood, Bania \& Wilson 1992). Even using the most extreme of these non-standard models (Hogan 1995), we obtain a generous upper bound to pre-galactic 3^3He: X3P3.2×105_{3P} \leq 3.2 \times10^{-5} which, nonetheless, leads to a stringent lower bound to the universal density of nucleons.Comment: 21 pages, plus 10 figures, accepted by Ap

    Temperature-dependent density profiles of trapped boson-fermion mixtures

    Full text link
    We present a semiclassical three-fluid model for a Bose-condensed mixture of interacting Bose and Fermi gases confined in harmonic traps at finite temperature. The model is used to characterize the experimentally relevant behaviour of the equilibrium density profile of the fermions with varying composition and temperature across the onset of degeneracy, for coupling strengths relevant to a mixture of 39^{39}K and 40^{40}K atoms.Comment: 9 pages, 2 postscript figures, accepted for publication in Eur. Phys. Jour.

    Kinetic energy of a trapped Fermi gas interacting with a Bose-Einstein condensate

    Full text link
    We study a confined mixture of bosons and fermions in the regime of quantal degeneracy, with particular attention to the effects of the interactions on the kinetic energy of the fermionic component. We are able to explore a wide region of system parameters by identifying two scaling variables which completely determine its state at low temperature. These are the ratio of the boson-fermion and boson-boson interaction strengths and the ratio of the radii of the two clouds. We find that the effect of the interactions can be sizeable for reasonable choices of the parameters and that its experimental study can be used to infer the sign of the boson-fermion scattering length. The interplay between interactions and thermal effects in the fermionic kinetic energy is also discussed.Comment: REVTEX, 8 pages, 6 figures included. Small corrections to text and figures, accepted for publication in EPJ

    Transition to hydrodynamics in colliding fermion clouds

    Full text link
    We study the transition from the collisionless to the hydrodynamic regime in a two-component spin-polarized mixture of 40K atoms by exciting its dipolar oscillation modes inside harmonic traps. The time evolution of the mixture is described by the Vlasov-Landau equations and numerically solved with a fully three-dimensional concurrent code. We observe a master/slave behaviour of the oscillation frequencies depending on the dipolar mode that is excited. Regardless of the initial conditions, the transition to hydrodynamics is found to shift to lower values of the collision rate as temperature decreases.Comment: 11 pages, iop style. submitted to the proceedings of the Levico 2003 worksho

    Excised acoustic black holes: the scattering problem in the time domain

    Full text link
    The scattering process of a dynamic perturbation impinging on a draining-tub model of an acoustic black hole is numerically solved in the time domain. Analogies with real black holes of General Relativity are explored by using recently developed mathematical tools involving finite elements methods, excision techniques, and constrained evolution schemes for strongly hyperbolic systems. In particular it is shown that superradiant scattering of a quasi-monochromatic wavepacket can produce strong amplification of the signal, offering the possibility of a significant extraction of rotational energy at suitable values of the angular frequency of the vortex and of the central frequency of the wavepacket. The results show that theoretical tools recently developed for gravitational waves can be brought to fruition in the study of other problems in which strong anisotropies are present.Comment: 8 pages, 9 figure
    corecore