32,124 research outputs found
Theory of photon coincidence statistics in photon-correlated beams
The statistics of photon coincidence counting in photon-correlated beams is thoroughly investigated considering the effect of the finite coincidence resolving time. The correlated beams are assumed to be generated using parametric downconversion, and the photon streams in the correlated beams are modeled by two partially correlated Poisson point processes. An exact expression for the mean rate of coincidence registration is developed using techniques from renewal theory. It is shown that the use of the traditional approximate rate, in certain situations, leads to the overestimation of the actual rate. The error between the exact and approximate coincidence rates increases as the coincidence-noise parameter, defined as the mean number of uncorrelated photons detected per coincidence resolving time, increases. The use of the exact statistics of the coincidence becomes crucial when the background noise is high or in cases when high precision measurement of coincidence is required. Such cases arise whenever the coincidence-noise parameter is even slightly in excess of zero. It is also shown that the probability distribution function of the time between consecutive coincidence registration can be well approximated by an exponential distribution function. The well-known and experimentally verified Poissonian model of the coincidence registration process is therefore theoretically justified. The theory is applied to an on-off keying communication system proposed by Mandel which has been shown to perform well in extremely noisy conditions. It is shown that the bit-error rate (BER) predicted by the approximate coincidence-rate theory can be significantly lower than the actual BER obtained using the exact theory
The Transition to College Process in PR-CETP Scholars
This article describes a study about the experiences of a group of students during the transition from high school to college. The students are future teachers who evidenced a high level of academic achievement in high school and received merit scholarships from the Puerto Rico Collaborative for Excellence in Teacher Preparation (PR-CETP). Two groups of students were compared: those who sustained a high GPA during their freshman year, and those who did not and, therefore, no longer qualified for the scholarship. The study was carried out through focused interviews with eight students, from three universities, four of whom maintained the scholarship and four who did not. Findings indicate that the main problems encountered were academic and social, and that the students received support from their families during the entire process. Regarding formal support, they pointed out that they felt highly satisfied with the services provided by PR-CETP and the universities, but they also pointed out (particularly those who lost the scholarship) that they needed additional services from the universities. They suggested, for example, better tutoring, and social activities among the scholars. The interviewed students, in general, consider that they faced the transition successfully since most of them described their academic, emotional, and social status as satisfactory at the time of the interviews
Statistical algorithm for nonuniformity correction in focal-plane arrays
A statistical algorithm has been developed to compensate for the fixed-pattern noise associated with spatial nonuniformity and temporal drift in the response of focal-plane array infrared imaging systems. The algorithm uses initial scene data to generate initial estimates of the gain, the offset, and the variance of the additive electronic noise of each detector element. The algorithm then updates these parameters by use of subsequent frames and uses the updated parameters to restore the true image by use of a least-mean-square error finite-impulse-response filter. The algorithm is applied to infrared data, and the restored images compare favorably with those restored by use of a multiple-point calibration technique
Quantum and Classical Glass Transitions in
When performed in the proper low field, low frequency limits, measurements of
the dynamics and the nonlinear susceptibility in the model Ising magnet in
transverse field, , prove the existence
of a spin glass transition for = 0.167 and 0.198. The classical behavior
tracks for the two concentrations, but the behavior in the quantum regime at
large transverse fields differs because of the competing effects of quantum
entanglement and random fields.Comment: 5 pages, 5 figures. Updated figure 3 with corrected calibration
information for thermometr
The invertebrate Caenorhabditis elegans biosynthesizes ascorbate.
l-Ascorbate, commonly known as vitamin C, serves as an antioxidant and cofactor essential for many biological processes. Distinct ascorbate biosynthetic pathways have been established for animals and plants, but little is known about the presence or synthesis of this molecule in invertebrate species. We have investigated ascorbate metabolism in the nematode Caenorhabditis elegans, where this molecule would be expected to play roles in oxidative stress resistance and as cofactor in collagen and neurotransmitter synthesis. Using high-performance liquid chromatography and gas-chromatography mass spectrometry, we determined that ascorbate is present at low amounts in the egg stage, L1 larvae, and mixed animal populations, with the egg stage containing the highest concentrations. Incubating C. elegans with precursor molecules necessary for ascorbate synthesis in plants and animals did not significantly alter ascorbate levels. Furthermore, bioinformatic analyses did not support the presence in C. elegans of either the plant or the animal biosynthetic pathway. However, we observed the complete (13)C-labeling of ascorbate when C. elegans was grown with (13)C-labeled Escherichia coli as a food source. These results support the hypothesis that ascorbate biosynthesis in invertebrates may proceed by a novel pathway and lay the foundation for a broader understanding of its biological role
Mechanical oscillations in lasing microspheres
We investigate the feasibility of activating coherent mechanical oscillations
in lasing microspheres by modulating the laser emission at a mechanical
eigenfrequency. To this aim, 1.5% Nd3+:Barium-Titanium-Silicate microspheres
with diameters around 50 {\mu}m were used as high quality factor (Q>10^6)
whispering gallery mode lasing cavities. We have implemented a pump-and-probe
technique in which the pump laser used to excite the Nd3+ ions is focused on a
single microsphere with a microscope objective and a probe laser excites a
specific optical mode with the evanescent field of a tapered fibre. The studied
microspheres show monomode and multi-mode lasing action, which can be modulated
in the best case up to 10 MHz. We have optically transduced thermally-activated
mechanical eigenmodes appearing in the 50-70 MHz range, the frequency of which
decreases with increasing the size of the microspheres. In a pump-and-probe
configuration we observed modulation of the probe signal up to the maximum pump
modulation frequency of our experimental setup, i.e., 20 MHz. This modulation
decreases with frequency and is unrelated to lasing emission, pump scattering
or thermal effects. We associate this effect to free-carrier-dispersion induced
by multiphoton pump light absorption. On the other hand, we conclude that, in
our current experimental conditions, it was not possible to resonantly excite
the mechanical modes. Finally, we discuss on how to overcome these limitations
by increasing the modulation frequency of the lasing emission and decreasing
the frequency of the mechanical eigenmodes displaying a strong degree of
optomechanical coupling.Comment: 17 pages, 5 figure
Mono-parametric quantum charge pumping: interplay between spatial interference and photon-assisted tunneling
We analyze quantum charge pumping in an open ring with a dot embedded in one
of its arms. We show that cyclic driving of the dot levels by a \textit{single}
parameter leads to a pumped current when a static magnetic flux is
simultaneously applied to the ring. Based on the computation of the
Floquet-Green's functions, we show that for low driving frequencies ,
the interplay between the spatial interference through the ring plus
photon-assisted tunneling gives an average direct current (dc) which is
proportional to . The direction of the pumped current can be
reversed by changing the applied magnetic field.Comment: 7 pages, 4 figures. To appear in Phys. Rev.
- …