4 research outputs found
Identification of Quantitative Trait Loci for Plant Height, Crown Diameter, and Plant Biomass in a Pseudo-F2 Population of Switchgrass
Switchgrass (Panicum virgatum) is a perennial warm-season grass that produces high biomass yield. Identification of mechanisms for genetic regulation of biomass traits has potential to facilitate genetic manipulation of switchgrass for enhancing biomass yield. The objective of this study was to identify quantitative trait loci for biomass-related traits in a pseudo-F2 population of switchgrass derived from an upland cross with a lowland switchgrass cultivar. Plant height (HT), crown diameter (CD), and plant biomass (PB) were assessed in field studies in 2015 and 2016. Plant height was positively correlated with PB in both years but only correlated with CD in 2016. Positive correlations between CD and PB were found in both years. Six quantitative trait loci (QTLs) were detected, including three QTLs on chromosome 2b for HT (2015) or CD (2016), two 2 QTLs on chromosome 2a for CD and PB in 2016, and one QTL on chromosome 5b for CD in 2016. The logarithm of the odds scores for these QTLs ranged from 4.9 to 8.2, and percentage variance explained ranged from 7.1 to 12.9%. One QTL on chromosome 2b appeared to simultaneously control HT in 2015 and CD in 2016. Homologs of candidate genes related to cell wall development and biosynthesis, hormone regulation, and metabolism were identified within the confidence interval of these QTLs. The findings from this study indicate that these QTLs can be important signals for genetic control of switchgrass growth
Quantitative Trait Locus Mapping for Flowering Time in a Lowland × Upland Switchgrass Pseudo-F2 Population
Flowering is an important developmental event in switchgrass (), as the time to complete the life cycle affects overall biomass accumulation. The objective of this study was to generate a linkage map using single nucleotide polymorphism (SNP) markers to identify quantitative trait loci (QTL) associated with flowering time. A pseudo-F population was created by crossing two siblings derived from an initial cross between the lowland population Ellsworth and the upland cultivar Summer. Heading and anthesis dates were collected for 2 yr at two locations: DeKalb, IL and Lafayette, IN. Nine QTL for flowering time were detected, two of which were heading-associated, four anthesis-associated, and three associated with both heading and anthesis. One QTL on linkage group (LG) 2a was detected for heading and anthesis in each location and year when environments were analyzed separately, and in a combined analysis across both locations and years. The effect on heading and anthesis of the QTL on LG 2a ranged from 4 to 13 and 5 to 9 d, respectively, depending on environment. Our findings validate QTL for switchgrass flowering time from previous research and identified additional QTL. Based on the switchgrass reference genome version 1.1, flowering time gene homologs reside near the LG 2a QTL and include PSEUDO RESPONSE REGULATOR 5, SUPPRESSOR OF FRIGIDA 4, and APETALA 1, respectively involved in the circadian clock, vernalization, and floral meristem identity. Markers linked to the QTL can be used to improve the efficiency of breeding switchgrass for delayed flowering to increase biomass yield
Genome-Wide Association Study in Pseudo-F2 Populations of Switchgrass Identifies Genetic Loci Affecting Heading and Anthesis Dates
Switchgrass (Panicum virgatum) is a native prairie grass and valuable bio-energy crop. The physiological change from juvenile to reproductive adult can draw important resources away from growth into producing reproductive structures, thereby limiting the growth potential of early flowering plants. Delaying the flowering of switchgrass is one approach by which to increase total biomass. The objective of this research was to identify genetic variants and candidate genes for controlling heading and anthesis in segregating switchgrass populations. Four pseudo-F2 populations (two pairs of reciprocal crosses) were developed from lowland (late flowering) and upland (early flowering) ecotypes, and heading and anthesis dates of these populations were collected in Lafayette, IN and DeKalb, IL in 2015 and 2016. Across 2 years, there was a 34- and 73-day difference in heading and a 52- and 75-day difference in anthesis at the Lafayette and DeKalb locations, respectively. A total of 37,901 single nucleotide polymorphisms obtained by exome capture sequencing of the populations were used in a genome-wide association study (GWAS) that identified five significant signals at three loci for heading and two loci for anthesis. Among them, a homolog of FLOWERING LOCUS T on chromosome 5b associated with heading date was identified at the Lafayette location across 2 years. A homolog of ARABIDOPSIS PSEUDO-RESPONSE REGULATOR 5, a light modulator in the circadian clock associated with heading date was detected on chromosome 8a across locations and years. These results demonstrate that genetic variants related to floral development could lend themselves to a long-term goal of developing late flowering varieties of switchgrass with high biomass yield