998 research outputs found
Human subjective response to steering wheel vibration caused by diesel engine idle
This study investigated the human subjective response to steering wheel vibration of the type caused by a four-cylinder diesel engine idle in passenger cars. Vibrotactile perception was assessed using sinusoidal amplitude-modulated vibratory stimuli of constant energy level (r.m.s. acceleration, 0.41 m/s(2)) having a carrier frequency of 26 Hz (i.e. engine firing frequency) and modulation frequency of 6.5 Hz (half-order engine harmonic). Evaluations of seven levels of modulation depth parameter m (0.0, 0.1, 0.2, 0.4, 0.6, 0.8, and 1.0) were performed in order to define the growth function of human perceived disturbance as a function of amplitude modulation depth. Two semantic descriptors were used (unpleasantness and roughness) and two test methods (the Thurstone paired-comparison method and the Borg CR-10 direct evaluation scale) for a total of four tests. Each test was performed using an independent group of 25 individuals. The results suggest that there is a critical value of modulation depth m = 0.2 below which human subjects do not perceive differences in amplitude modulation and above which the stimulus-response relationship increases monotonically with a power function. The Stevens power exponents suggest that the perceived unpleasantness is non-linearly dependent on modulation depth m with an exponent greater than 1 and that the perceived roughness is dependent with an exponent close to unity
Molecular Model of Dynamic Social Network Based on E-mail communication
In this work we consider an application of physically inspired sociodynamical model to the modelling of the evolution of email-based social network. Contrary to the standard approach of sociodynamics, which assumes expressing of system dynamics with heuristically defined simple rules, we postulate the inference of these rules from the real data and their application within a dynamic molecular model. We present how to embed the n-dimensional social space in Euclidean one. Then, inspired by the Lennard-Jones potential, we define a data-driven social potential function and apply the resultant force to a real e-mail communication network in a course of a molecular simulation, with network nodes taking on the role of interacting particles. We discuss all steps of the modelling process, from data preparation, through embedding and the molecular simulation itself, to transformation from the embedding space back to a graph structure. The conclusions, drawn from examining the resultant networks in stable, minimum-energy states, emphasize the role of the embedding process projecting the nonâmetric social graph into the Euclidean space, the significance of the unavoidable loss of information connected with this procedure and the resultant preservation of global rather than local properties of the initial network. We also argue applicability of our method to some classes of problems, while also signalling the areas which require further research in order to expand this applicability domain
Multimode Hong-Ou-Mandel Interferometry
We review some recent experiments based upon multimode two-photon
interference of photon pairs created by spontaneous parametric down-conversion.
The new element provided by these experiments is the inclusion of the
transverse spatial profiles of the pump, signal and idler fields. We discuss
multimode Hong-Ou-Mandel interference, and show that the transverse profile of
the pump beam can be manipulated in order to control two-photon interference.
We present the basic theory and experimental results as well as several
applications to the field of quantum information.Comment: 20 pages, 14 figures, Brief Review to be published in Modern Physics
Letters
Testing of quantum phase in matter wave optics
Various phase concepts may be treated as special cases of the maximum
likelihood estimation. For example the discrete Fourier estimation that
actually coincides with the operational phase of Noh, Fouge`res and Mandel is
obtained for continuous Gaussian signals with phase modulated mean.Since
signals in quantum theory are discrete, a prediction different from that given
by the Gaussian hypothesis should be obtained as the best fit assuming a
discrete Poissonian statistics of the signal. Although the Gaussian estimation
gives a satisfactory approximation for fitting the phase distribution of almost
any state the optimal phase estimation offers in certain cases a measurable
better performance. This has been demonstrated in neutron--optical experiment.Comment: 8 pages, 4 figure
Collisional perturbation of radio-frequency E1 transitions in an atomic beam of dysprosium
We have studied collisional perturbations of radio-frequency (rf)
electric-dipole (E1) transitions between the nearly degenerate opposite-parity
levels in atomic dysprosium (Dy) in the presence of 10 to 80 Torr of
H, N, He, Ar, Ne, Kr, and Xe. Collisional broadening and
shift of the resonance, as well as the attenuation of the signal amplitude are
observed to be proportional to the foreign-gas density with the exception of
H and Ne, for which no shifts were observed. Corresponding rates and cross
sections are presented. In addition, rates and cross sections for O are
extracted from measurements using air as foreign gas. The primary motivation
for this study is the need for accurate determination of the shift rates, which
are needed in a laboratory search for the temporal variation of the
fine-structure constant [A. T. Nguyen, D. Budker, S. K. Lamoreaux, and J. R.
Torgerson, Phys. Rev. A \textbf{69}, 22105 (2004)].Comment: 11 pages, 8 figure
Implementing Unitarity in Perturbation Theory
Unitarity cannot be perserved order by order in ordinary perturbation theory
because the constraint UU^\dagger=\1 is nonlinear. However, the corresponding
constraint for , being , is linear so it can be
maintained in every order in a perturbative expansion of . The perturbative
expansion of may be considered as a non-abelian generalization of the
linked-cluster expansion in probability theory and in statistical mechanics,
and possesses similar advantages resulting from separating the short-range
correlations from long-range effects. This point is illustrated in two QCD
examples, in which delicate cancellations encountered in summing Feynman
diagrams of are avoided when they are calculated via the perturbative expansion
of . Applications to other problems are briefly discussed.Comment: to appear in Phys. Rev.
- âŠ