5 research outputs found

    The Characterization of Two-Stage Ignition Effects on Late Injection Low Temperature Combustion Using Biodiesel and Biodiesel Blends

    Get PDF
    The first stage of ignition in saturated hydrocarbon fuels (in diesel combustion) is characterized as low temperature heat release (LTHR) or cool flame combustion. LTHR takes place as a series of isomerization reactions at temperatures from 600K to 900K, and is often detectable in HCCI, rapid compression machines, and early injection low temperature combustion (LTC). The experimental investigation presented attempts to determine the existence of LTHR behavior in late injection low temperature combustion in a medium duty diesel engine with both petroleum diesel and biodiesel fuels and to determine the influence of such behavior on LTC torque and emissions. Three experiments were performed to meet these objectives: the first studies two operating modes (conventional combustion with -8° after top dead center injection timing and 0% EGR and low temperature combustion with 0° after top dead center injection timing and nominally 42% EGR level) with standard petroleum diesel, palm biodiesel, and soy biodiesel; the second studies a sweep of EGR level from 0% to nominally 45% with petroleum diesel and palm biodiesel with a constant injection timing of 0° after top dead center. The third and final experiment utilized petroleum diesel, soy biodiesel, and blends from the two fuels (20 and 50% soy biodiesel) to see the influence of viscosity and density on LTHR. LTHR is apparent in all fuels’ rates of heat release profiles at the LTC operating conditions. Diesel fuel LTC displays a longer and more intense LTHR phase. Lower amounts of LTHR in the palm biodiesel causes less sensitivity to EGR, less instability, and produces better torque and emission characteristics. Density and viscosity only change the shape of the LTHR duration, while cetane number or ignition quality affects the length of the LTHR duration

    Emissions comparison between petroleum diesel and biodiesel in a medium-duty diesel engine

    Get PDF
    Biofuels have become very important topics over the past decade due to the rise in crude oil prices, fear of running out of crude oil, and environmental impact of emissions. Biodiesel is a biofuel that is made from plant seed oils, waste cooking oils, or animal fats. It has become increasingly popular and is looked at as a diesel replacement. This research characterizes the emissions of the new John Deere PowerTech Plus 4045HF285 in the Advance Engine Research Laboratory at Texas A&M University and compares the emissions of a 100 percent blended feed stock biodiesel to an ultra low sulfur diesel certification fuel. The steady state tests were conducted while holding engine speed constant at three different speeds and three different loads. The gaseous emissions, exhaust gas recirculation, fuel flow rate, and torque were monitored and recorded for 300 points per test. Four tests were performed and the results were averaged per each fuel. Carbon monoxide, carbon dioxide, oxygen, and oxides of nitrogen emissions were analyzed. The biodiesel averaged up to 12% lower torque, 5.4% more fuel, 7.5% less carbon dioxide, 29% more oxygen, and 29% more oxides of nitrogen. Overall the biodiesel produced less torque and carbon dioxide emissions, while emitting more oxygen and oxides of nitrogen

    Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease

    Get PDF
    BACKGROUND: Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes. METHODS: We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization. RESULTS: During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events. CONCLUSIONS: Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)

    From numbers to ecosystems and biodiversity: A mechanistic approach to monitoring

    No full text
    Diverse political, cultural and biological needs epitomise the contrasting demands impacting on the mandate of the South African National Parks (SANParks) to maintain biological diversity. Systems-based approaches and strategic adaptive management (learn by doing) enable SANParks to accommodate these demands. However, such a management strategy creates new information needs, which require an appropriate analytical approach. We use conceptual links between objectives, indicators, mechanisms and modulators to identify key concerns in the context of and related to management objectives. Although our suggested monitoring designs are based mostly on defined or predicted underlying mechanisms of a concern, SANParks requires inventory monitoring to evaluate its key mandate. We therefore propose a predictive inventory approach based on species assemblages related to habitat preferences. Inventories alone may not always adequately serve unpacking of mechanisms: in some cases population size needs to be estimated to meet the information needs of management strategies, but actual population sizes may indirectly affect how the species impact on other values. In addition, ecosystem objectives require multivariate assessments of key communities, which can be used in trend analysis. SANParks therefore needs to know how to detect and define trends efficiently, which, in turn, requires precision of measures of variables. Conservation implications: Current research needs with regard to monitoring should focus on defining designs to yield optimal precision whilst taking methodology, survey trade-offs and analytical approaches into account. Use of these directives and research will guide monitoring during evaluation of SANParks objectives at various scales
    corecore