3 research outputs found

    Detection of invasive species in Wetlands: Practical dl with heavily imbalanced data

    Get PDF
    Deep Learning (DL) has become popular due to its ease of use and accuracy, with Transfer Learning (TL) effectively reducing the number of images needed to solve environmental problems. However, this approach has some limitations which we set out to explore: Our goal is to detect the presence of an invasive blueberry species in aerial images of wetlands. This is a key problem in ecosystem protection which is also challenging in terms of DL due to the severe imbalance present in the data. Results for the ResNet50 network show a high classification accuracy while largely ignoring the blueberry class, rendering these results of limited practical interest to detect that specific class. Moreover, by using loss function weighting and data augmentation results more akin to our practical application, our goals can be obtained. Our experiments regarding TL show that ImageNet weights do not produce satisfactory results when only the final layer of the network is trained. Furthermore, only minor gains are obtained compared with random weights when the whole network is retrained. Finally, in a study of state-of-the-art DL architectures best results were obtained by the ResNeXt architecture with 93.75 True Positive Rate and 98.11 accuracy for the Blueberry class with ResNet50, Densenet, and wideResNet obtaining close results. © 2020 by the authors. Licensee MDPI, Basel, Switzerland

    Analysis of UAV-acquired wetland orthomosaics using GIS, computer vision, computational topology and deep learning

    Get PDF
    Invasive blueberry species endanger the sensitive environment of wetlands and protection laws call for management measures. Therefore, methods are needed to identify blueberry bushes, locate them, and characterise their distribution and properties with a minimum of disturbance. UAVs (Unmanned Aerial Vehicles) and image analysis have become important tools for classification and detection approaches. In this study, techniques, such as GIS (Geographical Information Systems) and deep learning, were combined in order to detect invasive blueberry species in wetland environments. Images that were collected by UAV were used to produce orthomosaics, which were analysed to produce maps of blueberry location, distribution, and spread in each study site, as well as bush height and area information. Deep learning networks were used with transfer learning and unfrozen weights in order to automatically detect blueberry bushes reaching True Positive Values (TPV) of 93.83% and an Overall Accuracy (OA) of 98.83%. A refinement of the result masks reached a Dice of 0.624. This study provides an efficient and effective methodology to study wetlands while using different techniques. © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This

    Potenziale für Photovoltaik an Bundesfernstraßen

    No full text
    Der Artikel beschreibt eine Forschungsstudie zur Berechnung von Photovoltaikpotentiale an verschiedenen Stellen entlang der Bundesfernstraßen. Dazu wurde ein Geodatensatz in einer Anwendung erzeugt der relevante Standorte identifizieren kann und eine Grundlage für weitere Vorgehensweisen bietet
    corecore