169 research outputs found

    Density functional theory calculation of the optical properties of graphene quantum dots

    Get PDF
    Graphene quantum dots (GQDs) are class of nanoparticles exhibiting unique and tunable electronic, optical, chemical and structural properties owing to their small size and quantum confinement and edge effects. GQDs most prominent characteristics are high photoluminescence, photostability, excellent photobleaching resistance, low citotoxicity, good biocompatibility, exceptional electrochemical activity and physicochemical stability, making them suitable for a wide range of applications, from biosensing and fluorescence bioimaging usage, photodynamic therapy, to optoelectronic, susteanable agricultural and environmental applications. Using density functional theory (DFT) we demonstrate that the optical properties of the GQDs can be sensitively tuned by its size, shape, edge configuration, attached chemical functionalities.Twenty-First Young Researchersā€™ Conference - Materials Science and Engineering: Program and the Book of Abstracts; November 29 ā€“ December 1, 2023, Belgrade, Serbi

    Self-assembly of carbon based nanoparticles films by Langmuir-Blodgett method

    Get PDF
    Carbon nanoparticles are a class of materials with extraordinary properties. In the past three decades, four major types of carbon nanoparticles were synthesized and investigated: fullerenes, carbon nanotubes, graphene and carbon quantum dots. One of the main properties of such materials is their hydrophobic nature. At the same time, Langmuirā€“Blodgett (LB) method the for deposition of thin films of hydrophobic materials provides the possibility to design thin films of different carbon-based nanoparticles with special architectures and features enabling their usage in various fields, particularly in electronics and biomedicine. In this review, the state of art of LB thin films of four types of carbon-based nanoparticles and their application in electronics and biomedicine are presented. The breakthrough in this field was finally achieved by application of carbon quantum dots soluble in solvents optimized for LB deposition

    Phloroglucinol-Based Carbon Quantum Dots/Polyurethane Composite Films: How Structure of Carbon Quantum Dots Affects Antibacterial and Antibiofouling Efficiency of Composite Films

    Get PDF
    Nowadays, bacteria resistance to many antibiotics is a huge problem, especially in clinics and other parts of the healthcare system. This critical health issue requires a dynamic approach to produce new types of antibacterial coatings to combat various pathogen microbes. In this research, we prepared a new type of carbon quantum dots based on phloroglucinol using the bottom-up method. Polyurethane composite films were produced using the swellā€“encapsulationā€“shrink method. Detailed electrostatic force and viscoelastic microscopy of carbon quantum dots revealed inhomogeneous structure characterized by electron-rich/soft and electron-poor/hard regions. The uncommon photoluminescence spectrum of carbon quantum dots core had a multipeak structure. Several tests confirmed that carbon quantum dots and composite films produced singlet oxygen. Antibacterial and antibiofouling efficiency of composite films was tested on eight bacteria strains and three bacteria biofilms

    Innovative modifications of graphene quantum dots for improved photodynamic therapy in antibacterial treatment

    Get PDF
    Considering the rising concern of antibiotic resistance, developing advanced antibacterial solutions is highly needed. The ability of graphene quantum dots (GQDs) to generate reactive oxygen species (ROS) upon light exposure made them promising candidates as agents in photodynamic therapy for combatting infections, including antibiotic-resistant strains. GQDs show versatile chemical, physical, and biological properties such as high fluorescent activity, resistance to photo-bleaching, low toxicity, excellent solubility, and biocompatibility. This research focused on exploring the ability of GQDs to produce singlet oxygen under blue light exposure. We used two singlet oxygen probes, 9,10-anthracenediylbis(methylene) dimalonic acid and 1,3-diphenylisobenzofuran to study photoinduced production radicals from several GQDs. To tune the ability of GQDs to generate ROS, we used gamma irradiation in two different media, the presence of L-cysteine and cyclopentanone. The results showed improvements in singlet oxygen production in both cases. However, the modification conducted with cyclopentanol showed notably higher efficacy in promoting singlet oxygen production. This research demonstrates the increasing significance of GQDs in discovering new methods to combat bacteria. The modification of GQDs with gamma irradiation leads to increased production of singlet oxygen enhancing the effectiveness of photodynamic therapy for treating infections.Twenty-First Young Researchersā€™ Conference - Materials Science and Engineering: Program and the Book of Abstracts; November 29 ā€“ December 1, 2023, Belgrade, Serbi

    The influence of tip sonication on structural and morphological properties of graphene

    Get PDF
    Although ultrasound is frequently used to disperse carbon nanomaterials in suitable solvents, the propagation of high-amplitude ultrasonic vibrations from the tip sonicator was found to be aggressive and has the potential to break down graphene sheets. Here, the effects of tip sonication time on structural and morphological properties of two types of graphene (graphene oxide and electrochemically exfoliated graphene) was investigated by UV-vis spectroscopy and Atomic Force Microscopy. It was found that the structural composition of the graphene was not affected by ultrasounds emitted from the tip sonicator even for the prolonged period of sonication (60 min). Microscopy analysis showed an increased portion of smaller graphene sheets in the sonicated samples for both types of graphene as a result of graphene sheet fragmentation caused by tip sonication

    Antibacterial and Antibiofouling Activities of Carbon Polymerized Dots/Polyurethane and C60/Polyurethane Composite Films

    Get PDF
    The cost of treatment of antibiotic-resistant pathogens is on the level of tens of billions of dollars at the moment. It is of special interest to reduce or solve this problem using antimicrobial coatings, especially in hospitals or other healthcare facilities. The bacteria can transfer from medical staff or contaminated surfaces to patients. In this paper, we focused our attention on the antibacterial and antibiofouling activities of two types of photodynamic polyurethane composite films doped with carbon polymerized dots (CPDs) and fullerene C60. Detailed atomic force, electrostatic force and viscoelastic microscopy revealed topology, nanoelectrical and nanomechanical properties of used fillers and composites. A relationship between the electronic structure of the nanocarbon fillers and the antibacterial and antibiofouling activities of the composites was established. Thorough spectroscopic analysis of reactive oxygen species (ROS) generation was conducted for both composite films, and it was found that both of them were potent antibacterial agents against nosocomial bacteria (Klebsiela pneumoniae, Proteus mirabilis, Salmonela enterica, Enterococcus faecalis, Enterococcus epidermis and Pseudomonas aeruginosa). Antibiofouling testing of composite films indicated that the CPDs/PU composite films eradicated almost completely the biofilms of Pseudomonas aeruginosa and Staphylococcus aureus and about 50% of Escherichia coli biofilms

    Plasmon induced enhancement of photoinduced antibacterial activity of graphene quantum dots

    Get PDF
    Due to the exponential growth of bacterial infection as well as resistance toward most antibiotics, the development of new materials for treatment is urgently needed. In recent years, graphene quantum dots (GQDs) have been identified as promising carbon nanomaterial for eco-friendly antibacterial applications due to their optical and chemical stability, non-toxicity, and biocompatibility. One of the reported GQDā€™s antimicrobial mechanisms is the photo-induced production of singlet oxygen (1O2). Under light exposure, GQDs transfer the energy to molecular oxygen from the surrounding medium. Oxygen molecules transform to their excited form 1O2, which causes oxidative stress in bacterial cells and reduces their viability. In this study, pristine GQDs were produced in an easy, one-step electrochemical top-down approach using graphite electrodes as a starting material. Carboxyl groups of GQDs are modified using a carbodiimide coupling reaction catalyzed by 1-ethyl-3- (3-dimethylaminopropyl)carbodiimide (EDC), with ethylenediamine (EDA) as an amine. In the next step, these NH2 terminated dots were decorated with gold nanoparticles (AuNPs) by the same EDC coupling procedure. Abillity of GQDs-AuNP nanocomposite to generate singlet oxygen upon blue light (470 nm) was investigated by UV-Vis spectroscopy and 9,10- anthracenediylbis-(methylene)dimalonic acid (ABDA) as selective 1O2 traping agent. After 2 hours of blue light illumination, the band at 420 nm charachterisic for ABDA was completly disaperided only in the presence of the GQD-AuNPs indicating good prooxidative potential of composite. Photoinduced antibacterial effects of GQD-AuNPs were studied using minimum inhibitory concentration (MIC) test which showed great antibacterial activity against several bacterial strains.Twenty-First Young Researchersā€™ Conference - Materials Science and Engineering: Program and the Book of Abstracts; November 29 ā€“ December 1, 2023, Belgrade, Serbi

    Ab Initio Study of Structural, Electronic and Optical Properties of Edge-Functionalized Graphene Quantum Dots

    Get PDF
    Graphene quantum dots (GQD) are nano-particles small enough to exhibit unique electronic and optical properties that results from quantum confinement and edge effects. Unlike graphene they exhibit opening of the HOMO-LUMO band gap responsible for their unique optoelectronic properties high photoluminescence (PL) quantum yield, excellent photobleaching resistance and photostability, low citotoxicity, good biocompatibility, high solubility in various solvents, exceptional electrochemical activity and physicochemical stability. These characterisics of the GQDs make them suitable for a wide range of applications from biomedical applications such as diagnostics and therapy, to susteanable agricultural and environmental appications. In this respect carbon-based quantum dots such as GQDs, present promising candidates for usage in biosensing and fluorescence bioimaging applications, allowing a fast, more sensitive and more selectable detection and diagnosis. As biocompatible nanoparticles, they also have the potential to revolutionize the prospects of photodynamic therapy (PDT) in clinical treatments of cancer [1] and other diseases, antibacterial [2] and preventive antivirus PDT [3], being applied as photosensitizer agents. In a meanwhile comprehensive biomedical studies should pave the way for safe and efficient use of carbon-based quantum dots in clinical applications. In the present work, we investigate the effects of size and shape variation, as well as edge-functionalization on the structural and optical properties of GQDs, using the first-principles study based on the density functional theory (DFT) and time-dependent density functional theory (TD-DFT). We investigate edge-functionalized GQDs, with oxygen-containing ā€“OH and ā€“COOH groups, different shapes, such as hexagonal, triangular and rectangular and zigzag/armchair edge configuration, as well as variation of size, in tailoring the optoelectronic properties and photoluminescence behaviour of GQDs leading to a wide variety of applications.29th International Symposium on Analytical and Environmental Problems : Proceedings; November 13-14, 2023; Szeged, Hungary

    Surface chemistry of "boron" doped carbon quantum dots

    Get PDF
    Carbon quantum dots (CQDs), are a novel class of carbon nanomaterials that exhibit outstanding physical, chemical, and optical characteristics in addition to strong light absorption. By substituting some of the carbon atoms in CQDs for heteroatoms like N, B, P, and S, it is possible to modify the surface chemistry and electronic properties of the structures, boosting their catalytic activity. Adding B dopant to CQDs changes its surface chemistry and morphology, opening up a wide range of potential uses. The presented study illustrates a quick and environmentally friendly method for producing B-CQDs through microwave-assisted method. According to TEM characterization, the generated B-CQDs had a spherical form, an average diameter of 12 nm, and were negatively charged particles with good water dispersibility and no discernible aggregation. The thorough surface chemistry characterization revealed the presence of B-O and B-C bonds, as well as oxygen-containing surface functional groups in the form of hydroxyl, carbonyl, and carboxyl groups. Additionally, using an RB organic dye as a model molecule, the sonocatalytic, photocatalytic, and synergistic effects of the two processes were investigated
    • ā€¦
    corecore