4 research outputs found

    Identification of Stanniocalcin 2 as a Novel Aryl Hydrocarbon Receptor Target Gene

    No full text
    Abstract Proper hepatocyte function is vital for survival; hence unrepaired destruction of the parenchymal tissue leading to liver decompensation is devastating. Therefore, understanding the homeostatic process regulating liver regeneration is clinically important, and evidence that the Aryl hydrocarbon Receptor (AhR) can promote cell survival following intrinsic apoptotic stimuli is integral to the regenerative process. The current study utilizes primary hepatocytes to identify survival mechanisms consistent with normal AhR biology. Taking advantage of the Cre-lox system to manipulate AhR status, we designed a comprehensive microarray analysis to identify immediate and direct changes in the transcriptome concomitant with the loss of the AhR. As a result we identified a unique data set with minimal overlap compared to previous array studies culminating in the identification of Stanniocalcin 2 (Stc2) as a novel receptor target gene previously reported to have a cytoprotective role in endoplasmic reticulum stress. The Stc2 promoter contains multiple putative xenobiotic response elements (XRE) clustered in a 250 bp region that was shown to recruit the AhR by chromatin immunoprecipitation. Interestingly, Stc2 gene expression is refractory to classic exogenous AhR agonists, but responds to cellular stress in an AhR-dependent mechanism consistent with a process promoting cell survival. JPET #201111

    Integrated genomic characterization of endometrial carcinoma

    Get PDF
    We performed an integrated genomic, transcriptomic and proteomic characterization of 373 endometrial carcinomas using array- and sequencing-based technologies. Uterine serous tumours and ~25% of high-grade endometrioid tumours had extensive copy number alterations, few DNA methylation changes, low oestrogen receptor/progesterone receptor levels, and frequent TP53 mutations. Most endometrioid tumours had few copy number alterations or TP53 mutations, but frequent mutations in PTEN, CTNNB1, PIK3CA, ARID1A and KRAS and novel mutations in the SWI/SNF chromatin remodelling complex gene ARID5B. A subset of endometrioid tumours that we identified had a markedly increased transversion mutation frequency and newly identified hotspot mutations in POLE. Our results classified endometrial cancers into four categories: POLE ultramutated, microsatellite instability hypermutated, copy-number low, and copy-number high. Uterine serous carcinomas share genomic features with ovarian serous and basal-like breast carcinomas. We demonstrated that the genomic features of endometrial carcinomas permit a reclassification that may affect post-surgical adjuvant treatment for women with aggressive tumours.National Institutes of Health (U.S.) (Grant 5U24CA143799-04)National Institutes of Health (U.S.) (Grant 5U24CA143835-04)National Institutes of Health (U.S.) (Grant 5U24CA143840-04)National Institutes of Health (U.S.) (Grant 5U24CA143843-04)National Institutes of Health (U.S.) (Grant 5U24CA143845-04)National Institutes of Health (U.S.) (Grant 5U24CA143848-04)National Institutes of Health (U.S.) (Grant 5U24CA143858-04)National Institutes of Health (U.S.) (Grant 5U24CA143866-04)National Institutes of Health (U.S.) (Grant 5U24CA143867-04)National Institutes of Health (U.S.) (Grant 5U24CA143882-04)National Institutes of Health (U.S.) (Grant 5U24CA143883-04)National Institutes of Health (U.S.) (Grant 5U24CA144025-04)National Institutes of Health (U.S.) (Grant U54HG003067-11)National Institutes of Health (U.S.) (Grant U54HG003079-10)National Institutes of Health (U.S.) (Grant U54HG003273-10

    Comprehensive genomic characterization of head and neck squamous cell carcinomas

    No full text
    The Cancer Genome Atlas profiled 279 head and neck squamous cell carcinomas (HNSCCs) to provide a comprehensive landscape of somatic genomic alterations. Here we show that human-papillomavirus-associated tumours are dominated by helical domain mutations of the oncogene PIK3CA, novel alterations involving loss of TRAF3, and amplification of the cell cycle gene E2F1. Smoking-related HNSCCs demonstrate near universal loss-of-function TP53 mutations and CDKN2A inactivation with frequent copy number alterations including amplification of 3q26/28 and 11q13/22. A subgroup of oral cavity tumours with favourable clinical outcomes displayed infrequent copy number alterations in conjunction with activating mutations of HRAS or PIK3CA, coupled with inactivating mutations of CASP8, NOTCH1 and TP53. Other distinct subgroups contained loss-of-function alterations of the chromatin modifier NSD1, WNT pathway genes AJUBA and FAT1, and activation of oxidative stress factor NFE2L2, mainly in laryngeal tumours. Therapeutic candidate alterations were identified in most HNSCCsclose9
    corecore