176 research outputs found
Predicting human mobility through the assimilation of social media traces into mobility models
Predicting human mobility flows at different spatial scales is challenged by
the heterogeneity of individual trajectories and the multi-scale nature of
transportation networks. As vast amounts of digital traces of human behaviour
become available, an opportunity arises to improve mobility models by
integrating into them proxy data on mobility collected by a variety of digital
platforms and location-aware services. Here we propose a hybrid model of human
mobility that integrates a large-scale publicly available dataset from a
popular photo-sharing system with the classical gravity model, under a stacked
regression procedure. We validate the performance and generalizability of our
approach using two ground-truth datasets on air travel and daily commuting in
the United States: using two different cross-validation schemes we show that
the hybrid model affords enhanced mobility prediction at both spatial scales.Comment: 17 pages, 10 figure
Mapping urban socioeconomic inequalities in developing countries through Facebook advertising data
Ending poverty in all its forms everywhere is the number one Sustainable Development Goal of the UN 2030 Agenda. To monitor the progress toward such an ambitious target, reliable, up-to-date and fine-grained measurements of socioeconomic indicators are necessary. When it comes to socioeconomic development, novel digital traces can provide a complementary data source to overcome the limits of traditional data collection methods, which are often not regularly updated and lack adequate spatial resolution. In this study, we collect publicly available and anonymous advertising audience estimates from Facebook to predict socioeconomic conditions of urban residents, at a fine spatial granularity, in four large urban areas: Atlanta (USA), Bogotá (Colombia), Santiago (Chile), and Casablanca (Morocco). We find that behavioral attributes inferred from the Facebook marketing platform can accurately map the socioeconomic status of residential areas within cities, and that predictive performance is comparable in both high and low-resource settings. Our work provides additional evidence of the value of social advertising media data to measure human development and it also shows the limitations in generalizing the use of these data to make predictions across countries
Gender gaps in urban mobility
Abstract Mobile phone data have been extensively used to study urban mobility. However, studies based on gender-disaggregated large-scale data are still lacking, limiting our understanding of gendered aspects of urban mobility and our ability to design policies for gender equality. Here we study urban mobility from a gendered perspective, combining commercial and open datasets for the city of Santiago, Chile. We analyze call detail records for a large cohort of anonymized mobile phone users and reveal a gender gap in mobility: women visit fewer unique locations than men, and distribute their time less equally among such locations. Mapping this mobility gap over administrative divisions, we observe that a wider gap is associated with lower income and lack of public and private transportation options. Our results uncover a complex interplay between gendered mobility patterns, socio-economic factors and urban affordances, calling for further research and providing insights for policymakers and urban planners
High-resolution contact networks of free-ranging domestic dogs Canis familiaris and implications for transmission of infection
This is the final version. Available on open access from Public Library of Science via the DOI in this recordData Availability: All data and code supporting these analyses are available on Dryad doi:10.5061/dryad.7v62484.Contact patterns strongly influence the dynamics of disease transmission in both human and non-human animal populations. Domestic dogs Canis familiaris are a social species and are a reservoir for several zoonotic infections, yet few studies have empirically determined contact patterns within dog populations. Using high-resolution proximity logging technology, we characterised the contact networks of free-ranging domestic dogs from two settlements (n = 108 dogs, covering >80 % of the population in each settlement) in rural Chad. We used these data to simulate the transmission of an infection comparable to rabies and investigated the effects of including observed contact heterogeneities on epidemic outcomes. We found that dog contact networks displayed considerable heterogeneity, particularly in the duration of contacts and that the network had communities that were highly correlated with household membership. Simulations using observed contact networks had smaller epidemic sizes than those that assumed random mixing, demonstrating the unsuitability of homogenous mixing models in predicting epidemic outcomes. When contact heterogeneities were included in simulations, the network position of the individual initially infected had an important effect on epidemic outcomes. The risk of an epidemic occurring was best predicted by the initially infected individual’s ranked degree, while epidemic size was best predicted by the individual’s ranked eigenvector centrality. For dogs in one settlement, we found that ranked eigenvector centrality was correlated with range size. Our results demonstrate that observed heterogeneities in contacts are important for the prediction of epidemiological outcomes in free-ranging domestic dogs. We show that individuals presenting a higher risk for disease transmission can be identified by their network position and provide evidence that observable traits hold potential for informing targeted disease management strategies.Carter Cente
A Self-Powered Wireless Water Quality Sensing Network Enabling Smart Monitoring of Biological and Chemical Stability in Supply Systems
A smart, safe, and efficient management of water is fundamental for both developed and developing countries. Several wireless sensor networks have been proposed for real-time monitoring of drinking water quantity and quality, both in the environment and in pipelines. However, surface fouling significantly affects the long-term reliability of pipes and sensors installed in-line. To address this relevant issue, we presented a multi-parameter sensing node embedding a miniaturized slime monitor able to estimate the micrometric thickness and type of slime. The measurement of thin deposits in pipes is descriptive of water biological and chemical stability and enables early warning functions, predictive maintenance, and more efficient management processes. After the description of the sensing node, the related electronics, and the data processing strategies, we presented the results of a two-month validation in the field of a three-node pilot network. Furthermore, self-powering by means of direct energy harvesting from the water flowing through the sensing node was also demonstrated. The robustness and low cost of this solution enable its upscaling to larger monitoring networks, paving the way to water monitoring with unprecedented spatio-temporal resolution.
Document type: Articl
On the use of human mobility proxy for the modeling of epidemics
Human mobility is a key component of large-scale spatial-transmission models
of infectious diseases. Correctly modeling and quantifying human mobility is
critical for improving epidemic control policies, but may be hindered by
incomplete data in some regions of the world. Here we explore the opportunity
of using proxy data or models for individual mobility to describe commuting
movements and predict the diffusion of infectious disease. We consider three
European countries and the corresponding commuting networks at different
resolution scales obtained from official census surveys, from proxy data for
human mobility extracted from mobile phone call records, and from the radiation
model calibrated with census data. Metapopulation models defined on the three
countries and integrating the different mobility layers are compared in terms
of epidemic observables. We show that commuting networks from mobile phone data
well capture the empirical commuting patterns, accounting for more than 87% of
the total fluxes. The distributions of commuting fluxes per link from both
sources of data - mobile phones and census - are similar and highly correlated,
however a systematic overestimation of commuting traffic in the mobile phone
data is observed. This leads to epidemics that spread faster than on census
commuting networks, however preserving the order of infection of newly infected
locations. Match in the epidemic invasion pattern is sensitive to initial
conditions: the radiation model shows higher accuracy with respect to mobile
phone data when the seed is central in the network, while the mobile phone
proxy performs better for epidemics seeded in peripheral locations. Results
suggest that different proxies can be used to approximate commuting patterns
across different resolution scales in spatial epidemic simulations, in light of
the desired accuracy in the epidemic outcome under study.Comment: Accepted fro publication in PLOS Computational Biology. Abstract
shortened to fit Arxiv limits. 35 pages, 6 figure
- …