3 research outputs found

    Exploring the improvement of human cell cryopreservation

    Get PDF
    Regenerative medicine is an emerging technology and with hundreds of cell therapies currently in clinical trials there is a need to expand the limited knowledge related to their storage, shipment and preservation. The most widely used medium for human cell cryopreservation is 10%wt dimethyl sulfoxide (DMSO) in serum. However given its potential toxicity, DMSO usage is a key issue in cryopreservation. Methods specify the need to reduce cell exposure time to DMSO above 0°C as much as possible but the maximum amount of time cells can be exposed to DMSO to prevent a detrimental effect needs to be clarified. There are also regulatory issues and concerns with the xenotoxicity, ethics and supply of the other core component in the standard cryomedia formulation: Foetal Bovine Serum (FBS). Developing a viable alternative to FBS is crucial. In cryobiology literature thawing appears poorly understood. A stable process is as vital as freezing to prevent injury to cells. Protocols are currently too vague for cell therapy regulation and need improvement. The time dependent DMSO cytotoxicity was evaluated by overexposing cells to DMSO during and/or after cryopreservation. A broad investigation found that after 1 hour overexposure post thaw viability of human mesenchymal stem cells (hMSCs) was reduced from 96.3±0.6% to 74.1±4.0% and the co-expression of five key hMSC markers was changed from 97.9±1.3% to 68.3±2.6%. This significant change could cause indicate a change in product efficacy and affect patient health, to prevent this, DMSO exposure must be kept to below 1 hour. A range of alternative vehicle solutions were screened and human platelet lysate (hPL) investigated as an alternative. In depth experimentation with hPL as a cryopreservation vehicle solution and culture supplement (in place of FBS) found it to be a worthy, statistically similar alternative. With no xenological or ethical concerns, lower costs than other serum-free alternatives hPL could allow for a move away from xenological components. A heat transfer model was developed and determined that 720J is required to thaw a vial. Using the heat transfer model and additional factors such as pre-thaw stabilisation and on thaw dilution, a two-stage experiment found that the current standard process (warming in a 37°C waterbath) within the current paradigm of a 1.8mL cryovial is optimal but further work is required to define the process for scaled-up product

    Amphipathic polymer-mediated uptake of trehalose for dimethyl sulfoxide-free human cell cryopreservation

    Get PDF
    For stem cell therapy to become a routine reality, one of the major challenges to overcome is their storage and transportation. Currently this is achieved by cryopreserving cells utilising the cryoprotectant dimethyl sulfoxide (MeSO). MeSO is toxic to cells, leads to loss of cell functionality, and can produce severe side effects in patients. Potentially, cells could be frozen using the cryoprotectant trehalose if it could be delivered into the cells at a sufficient concentration. The novel amphipathic membrane permeabilising agent PP-50 has previously been shown to enhance trehalose uptake by erythrocytes, resulting in increased cryosurvival. Here, this work was extended to the nucleated human cell line SAOS-2. Using the optimum PP-50 concentration and media osmolarity, cell viability post-thaw was 60±2%. In addition, the number of metabolically active cells 24h post-thaw, normalised to that before freezing, was found to be between 103±4% and 91±5%. This was found to be comparable to cells frozen using MeSO. Although reduced (by 22±2%, p=0.09), the doubling time was found not to be statistically different to the non-frozen control. This was in contrast to cells frozen using MeSO, where the doubling time was significantly reduced (by 41±4%, p=0.004). PP-50 mediated trehalose delivery into cells could represent an alternative cryopreservation protocol, suitable for research and therapeutic applications. © 2013 The Authors

    Amphipathic polymer-mediated uptake of trehalose for dimethyl sulfoxide-free human cell cryopreservation

    Get PDF
    For stem cell therapy to become a routine reality, one of the major challenges to overcome is their storage and transportation. Currently this is achieved by cryopreserving cells utilising the cryoprotectant dimethyl sulfoxide (MeSO). MeSO is toxic to cells, leads to loss of cell functionality, and can produce severe side effects in patients. Potentially, cells could be frozen using the cryoprotectant trehalose if it could be delivered into the cells at a sufficient concentration. The novel amphipathic membrane permeabilising agent PP-50 has previously been shown to enhance trehalose uptake by erythrocytes, resulting in increased cryosurvival. Here, this work was extended to the nucleated human cell line SAOS-2. Using the optimum PP-50 concentration and media osmolarity, cell viability post-thaw was 60±2%. In addition, the number of metabolically active cells 24h post-thaw, normalised to that before freezing, was found to be between 103±4% and 91±5%. This was found to be comparable to cells frozen using MeSO. Although reduced (by 22±2%, p=0.09), the doubling time was found not to be statistically different to the non-frozen control. This was in contrast to cells frozen using MeSO, where the doubling time was significantly reduced (by 41±4%, p=0.004). PP-50 mediated trehalose delivery into cells could represent an alternative cryopreservation protocol, suitable for research and therapeutic applications. © 2013 The Authors
    corecore