71 research outputs found

    Pre-stack full waveform inversion of ultra-high-frequency marine seismic reflection data

    Get PDF
    The full waveform inversion (FWI) of seismic reflection data aims to reconstruct a detailed physical properties model of the subsurface, fitting both the amplitude and the traveltime of the reflections generated at physical discontinuities in the propagation medium. Unlike reservoir-scale seismic exploration, where seismic inversion is a widely adopted remote characterization tool, ultrahigh-frequency (UHF, 0.2–4.0 kHz) multichannel marine reflection seismology is still most often limited to a qualitative interpretation of the reflections’ architecture. Here we propose an elastic FWI methodology, custom-tailored for pre-stack UHF marine data in vertically heterogeneous media to obtain a decimetric-scale distribution of P-impedance, density and Poisson’s ratio within the shallow subseabed sediments. We address the deterministic multiparameter inversion in a sequential fashion. The complex trace instantaneous phase is first inverted for the P-wave velocity to make up for the lack of low frequency in the data and reduce the nonlinearity of the problem. This is followed by a short-offset P-impedance optimization and a further step of full offset range Poisson’s ratio inversion. Provided that the seismogram contains wide reflection angles (>40°), we show that it is possible to invert for density and decompose a posteriori the relative contribution of P-wave velocity and density to the P-impedance. A broad range of synthetic tests is used to prove the potential of the methodology and highlights sensitivity issues specific to UHF seismic. An example application to real data is also presented. In the real case, trace normalization is applied to minimize the systematic error deriving from an inaccurate source wavelet estimation. The inverted model for the top 15 m of the subseabed agrees with the local lithological information and core-log data. Thus, we can obtain a detailed remote characterization of the shallow sediments using a multichannel sub-bottom profiler within a reasonable computing cost and with minimal pre-processing. This has the potential to reduce the need of extensive geotechnical coring campaigns

    Decimetric-resolution stochastic inversion of shallow marine seismic reflection data: dedicated strategy and application to a geohazard case study

    Get PDF
    Characterization of the top 10–50 m of the subseabed is key for landslide hazard assessment, offshore structure engineering design and underground gas-storage monitoring. In this paper, we present a methodology for the stochastic inversion of ultra-high-frequency (UHF, 0.2–4.0 kHz) pre-stack seismic reflection waveforms, designed to obtain a decimetric-resolution remote elastic characterization of the shallow sediments with minimal pre-processing and little a priori information. We use a genetic algorithm in which the space of possible solutions is sampled by explicitly decoupling the short and long wavelengths of the P-wave velocity model. This approach, combined with an objective function robust to cycle skipping, outperforms a conventional model parametrization when the ground-truth is offset from the centre of the search domain. The robust P-wave velocity model is used to precondition the width of the search range of the multiparameter elastic inversion, thereby improving the efficiency in high-dimensional parametrizations. Multiple independent runs provide a set of independent results from which the reproducibility of the solution can be estimated. In a real data set acquired in Finneidfjord, Norway, we also demonstrate the sensitivity of UHF seismic inversion to shallow subseabed anomalies that play a role in submarine slope stability. Thus, the methodology has the potential to become an important practical tool for marine ground model building in spatially heterogeneous areas, reducing the reliance on expensive and time-consuming coring campaigns for geohazard mitigation in marine areas

    Causes and Consequences of Diachronous V-Shaped Ridges in the North Atlantic Ocean

    Get PDF
    In the North Atlantic Ocean, the geometry of diachronous V‐shaped features that straddle the Reykjanes Ridge is often attributed to thermal pulses which advect away from the center of the Iceland plume. Recently, two alternative hypotheses have been proposed: rift propagation and buoyant mantle upwelling. Here we evaluate these different proposals using basin‐wide geophysical and geochemical observations. The centerpiece of our analysis is a pair of seismic reflection profiles oriented parallel to flow lines that span the North Atlantic Ocean. V‐shaped ridges and troughs are mapped on both Neogene and Paleogene oceanic crust, enabling a detailed chronology of activity to be established for the last 50 million years. Estimates of the cumulative horizontal displacement across normal faults help to discriminate between brittle and magmatic modes of plate separation, suggesting that crustal architecture is sensitive to the changing planform of the plume. Water‐loaded residual depth measurements are used to estimate crustal thickness and to infer mantle potential temperature which varies by ±25°C on timescales of 3–8 Ma. This variation is consistent with the range of temperatures inferred from geochemical modeling of dredged basaltic rocks along the ridge axis itself, from changes in Neogene deep‐water circulation, and from the regional record of episodic Cenozoic magmatism. We conclude that radial propagation of transient thermal anomalies within an asthenospheric channel that is 150 ± 50 km thick best accounts for the available geophysical and geochemical observations

    Controls on spatial and temporal evolution of prism faulting and relationships to plate boundary slip offshore north-central Sumatra

    Full text link
    Across- and along-strike variations in the morphology and structure of the north-central Sumatran forearc (~1.5°S to 1°N) are broadly coincident with subducting plate topography and an earthquake segment boundary zone below the Batu Islands. We present a detailed interpretation of multichannel streamer seismic reflection data collected offshore north-central Sumatra, to better characterize the morphological and structural variations, provide insight into fault development, and relate structure to plate boundary rupture and seismicity patterns. We interpret two relatively continuous, major fault structures that divide the prism into three strike-parallel belts that can be characterized by the relative fault slip rates along major and minor fault structures. The midslope break fault(s) and upper slope-bounding fault(s) are major, potentially out-of-sequence thrusts accommodating a significant component of the compressional strain. We propose that the upper slope-bounding fault represents the more mature end-member of an evolving fault system. Landward vergent structures are associated with a relatively thin sedimentary section near the deformation front in the center of our study area and suggest a potentially weak shallow plate boundary associated with the subducting Wharton Fossil Ridge

    Pervasive deformation of an oceanic plate and relationship to large >Mw 8 intraplate earthquakes: The northern Wharton Basin, Indian Ocean

    Get PDF
    Large-magnitude intraplate earthquakes within the ocean basins are not well understood. The Mw 8.6 and Mw 8.2 strike-slip intraplate earthquakes on 11 April 2012, while clearly occurring in the equatorial Indian Ocean diffuse plate boundary zone, are a case in point, with disagreement on the nature of the focal mechanisms and the faults that ruptured. We use bathymetric and seismic reflection data from the rupture area of the earthquakes in the northern Wharton Basin to demonstrate pervasive brittle deformation between the Ninetyeast Ridge and the Sunda subduction zone. In addition to evidence of recent strike-slip deformation along approximately north-south–trending fossil fracture zones, we identify a new type of deformation structure in the Indian Ocean: conjugate Riedel shears limited to the sediment section and oriented oblique to the north-south fracture zones. The Riedel shears developed in the Miocene, at a similar time to the onset of diffuse deformation in the central Indian Ocean. However, left-lateral strike-slip reactivation of existing fracture zones started earlier, in the Paleocene to early Eocene, and compartmentalizes the Wharton Basin. Modeled rupture during the 11 April 2012 intraplate earthquakes is consistent with the location of two reactivated, closely spaced, approximately north-south–trending fracture zones. However, we find no evidence for WNW-ESE–trending faults in the shallow crust, which is at variance with most of the earthquake fault models

    Uplift and exposure of serpentinized massifs: Modeling differential serpentinite diapirism and exhumation of the Troodos Mantle Sequence, Cyprus

    Get PDF
    Serpentinized mantle peridotites form prominent mountains, including the highest elevations of the Troodos ophiolite in Cyprus (Mount Olympus, 1,952 m), but to date, only qualitative mechanisms have been proposed to explain the uplift of mantle rocks to high altitudes. Serpentinization reactions between mantle rocks and water result in profound changes to the rheology and physical properties of peridotites including significant density reduction (∌900 kg/m3). Field observations, density measurements, and isostatic uplift and erosional modeling provide new constraints on the contribution of serpentinization to the uplift of the Troodos Mantle Sequence. Different serpentinization styles have resulted in two distinct serpentinite domains with contrasting densities. Our modeling shows that the Troodos Mountains can form within the geologically constrained uplift time frame (∌5.5 Myr) exclusively through partial serpentinization reactions. We interpret the serpentinite domains as two nested diapirs that formed due to different extents of serpentinization and density reduction. Differential uplift and exhumation have decoupled the two serpentinite diapirs from the originally overlying ocean crustal rocks. Once at high altitudes the incursion of meteoric water reinforced coupled deformation-alteration-recrystallization processes in the shallow subsurface producing a localized low density completely serpentinized diapir. A second decoupling between the contrasting serpentinite diapirs results in localized differential uplift and exhumation, extruding deep materials to the east of Mount Olympus. Application of our modeling to other serpentinite massifs (e.g., St. Peter and St. Paul Rocks, New Idria, California) highlights the contribution of isostasy to the uplift of serpentinized massifs

    Seismic chimney characterisation in the North Sea – Implications for pockmark formation and shallow gas migration

    Get PDF
    Fluid-escape structures within sedimentary basins permit pressure-driven focused fluid flow through inter-connected faults, fractures and sediment. Seismically-imaged chimneys are recognised as fluid migration pathways which cross-cut overburden stratigraphy, hydraulically connecting deeper strata with the seafloor. However, the geological processes in the sedimentary overburden which control the mechanisms of genesis and temporal evolution require improved understanding. We integrate high resolution 2D and 3D seismic reflection data with sediment core data to characterise a natural, active site of seafloor methane venting in the UK North Sea and Witch Ground Basin, the Scanner pockmark complex. A regional assessment of shallow gas distribution presents direct evidence of active and palaeo-fluid migration pathways which terminate at the seabed pockmarks. We show that these pockmarks are fed from a methane gas reservoir located at 70 metres below the seafloor. We find that the shallow reservoir is a glacial outwash fan, that is laterally sealed by glacial tunnel valleys. Overpressure generation leading to chimney and pockmark genesis is directly controlled by the shallow geological and glaciogenic setting. Once formed, pockmarks act as drainage cells for the underlying gas accumulations. Fluid flow occurs through gas chimneys, comprised of a sub-vertical gas-filled fracture zone. Our findings provide an improved understanding of focused fluid flow and pockmark formation within the sediment overburden, which can be applied to subsurface geohazard assessment and geological storage of CO2
    • 

    corecore