3,462 research outputs found

    Systematic variation of the 12CO/13CO ratio as a function of star-formation rate surface density

    Get PDF
    We show that the12CO/13CO intensity ratio in nearby galaxies varies systematically as a function of the star formation rate surface density and gas surface density. The same effect is observed in different transitions, and in the 12CO/C18O ratio, while the 13CO/C18O ratio appears to remain constant as a function of the star formation rate surface density. We discuss the cause of these variations, considering both changes in the physical state of the gas, and chemical changes that lead to abundance variations. We used the observed correlations with C18O to suggest that abundance variations are unlikely to be causing the systematic trend observed with the star formation rate surface density, and thus that the mean gas temperature and/or velocity dispersion are systematically higher in higher star-formation rate surface density regions. We present the best fitting relations between the star formation rate surface density and the 12CO/13CO and 12CO/C18O ratios, and discuss how this effect can help us predict CO isotope emission from galaxies across the known universe.Comment: 7 pages, 4 figures, accepted to MNRA

    The â„“2\ell^2-homology of even Coxeter groups

    Full text link
    Given a Coxeter system (W,S), there is an associated CW-complex, Sigma, on which W acts properly and cocompactly. We prove that when the nerve L of (W,S) is a flag triangulation of the 3-sphere, then the reduced â„“2\ell^2-homology of Sigma vanishes in all but the middle dimension.Comment: 15 pages, 1 figur

    Molecular Gas Properties of the Giant Molecular Cloud Complexes in the Arms and Inter-arms of the Spiral Galaxy NGC 6946

    Full text link
    Combining observations of multiple CO lines with radiative transfer modeling is a very powerful tool to investigate the physical properties of the molecular gas in galaxies. Using new observations as well as literature data, we provide the most complete CO ladders ever generated for eight star-forming regions in the spiral arms and inter-arms of the spiral galaxy NGC 6946, with observations of the CO(1-0), CO(2-1), CO(3-2), CO(4-3), CO(6-5), 13CO(1-0) and 13CO(2-1) transitions. For each region, we use the large velocity gradient assumption to derive beam-averaged molecular gas physical properties, namely the gas kinetic temperature (T_K), H2 number volume density n(H2) and CO number column density N(CO). Two complementary approaches are used to compare the observations with the model predictions: chi-square minimisation and likelihood. The physical conditions derived vary greatly from one region to the next: T_K=10-250 K, n(H2)=10^2.3-10^7.0 cm^-3 and N(CO)=10^15.0-10^19.3 cm^-2. The spectral line energy distribution (SLED) of some of these extranuclear regions indicates a star-formation activity that is more intense than that at the centre of our own Milky Way. The molecular gas in regions with a large SLED turnover transition (J_max>4) is hot but tenuous with a high CO column density, while that in regions with a low SLED turnover transition (J_max<=4) is cold but dense with a low CO column density. We finally discuss and find some correlations between the physical properties of the molecular gas in each region and the presence of young stellar population indicators (supernova remnants, HII regions, HI holes, etc.)Comment: 23 pages, 11 figures, MNRAS, Accepte

    A black-hole mass measurement from molecular gas kinematics in NGC4526

    Full text link
    The masses of the supermassive black-holes found in galaxy bulges are correlated with a multitude of galaxy properties, leading to suggestions that galaxies and black-holes may evolve together. The number of reliably measured black-hole masses is small, and the number of methods for measuring them is limited, holding back attempts to understand this co-evolution. Directly measuring black-hole masses is currently possible with stellar kinematics (in early-type galaxies), ionised-gas kinematics (in some spiral and early-type galaxies) and in rare objects which have central maser emission. Here we report that by modelling the effect of a black-hole on the kinematics of molecular gas it is possible to fit interferometric observations of CO emission and thereby accurately estimate black hole masses. We study the dynamics of the gas in the early-type galaxy NGC4526, and obtain a best fit which requires the presence of a central dark-object of 4.5(+4.2-3.0)x10^8 Msun (3 sigma confidence limit). With next generation mm-interferometers (e.g. ALMA) these observations could be reproduced in galaxies out to 75 megaparsecs in less the 5 hours of observing time. The use of molecular gas as a kinematic tracer should thus allow one to estimate black-hole masses in hundreds of galaxies in the local universe, many more than accessible with current techniques.Comment: To appear in Nature online on 30/01/2013. 3 Pages, 2 Figures (plus two pages of supplementary information

    ISM chemistry in metal rich environments: molecular tracers of metallicity

    Full text link
    In this paper we use observations of molecular tracers in metal rich and alpha-enhanced galaxies to study the effect of abundance changes on molecular chemistry. We selected a sample of metal rich spiral and star bursting objects from the literature, and present here new data for a sample of early-type galaxies (ETGs). We conducted the first survey of CS and methanol emission in ETGs, detecting 7 objects in CS, and 5 in methanol emission. We find evidence to support the hypothesis that CS is a better tracer of dense star-forming gas than HCN. We suggest that the methanol emission in these sources is driven by dust mantle destruction due to ionisation from high mass star formation, but cannot rule out shocks dominating in some sources. The derived source averaged CS/methanol column densities and rotation temperatures are similar to those found in normal spiral and starburst galaxies, suggesting dense clouds are little affected by the differences between galaxy types. Finally we used the total column density ratios for our galaxy samples to show for the first time that some molecular tracers do seem to show systematic variations that appear to correlate with metallicity, and that these variations roughly match those predicted by chemical models. Using this fact, the chemical models of Bayet et al. (2012b), and assumptions about the optical depth we are able to roughly predict the metallicity of our spiral and ETG sample, with a scatter of ~0.3 dex. We provide the community with linear approximations to the relationship between the HCN and CS column density ratio and metallicity. Further study will clearly be required to determine if this, or any, molecular tracer can be used to robustly determine gas-phase metallically, but that a relationship exists at all suggests that in the future it may be possible to calibrate a metallicity indicator for the molecular interstellar medium (abridged).Comment: 14 pages, 9 figures. MNRAS, accepte

    On the depletion and accretion time-scales of cold gas in local early-type galaxies

    Get PDF
    We consider what can be learnt about the processes of gas accretion and depletion from the kinematic misalignment between the cold/warm gas and stars in local early-type galaxies. Using simple analytic arguments and a toy model of the processes involved, we show that the lack of objects with counter-rotating gas reservoirs strongly constrains the relaxation, depletion and accretion time-scales of gas in early-type galaxies. Standard values of the accretion rate, star-formation efficiency and relaxation rate are not simultaneously consistent with the observed distribution of kinematic misalignments. To reproduce that distribution, both fast gas depletion (tdep ≲ 108 yr; e.g. more efficient star formation) and fast gas destruction (e.g. by active galactic nucleus feedback) can be invoked, but both also require a high rate of gas-rich mergers (>1 Gyr−1). Alternatively, the relaxation of misaligned material could happen over very long time-scales (≃100 dynamical times or ≈1–5 Gyr). We explore the various physical processes that could lead to fast gas depletion and/or slow gas relaxation, and discuss the prospects of using kinematic misalignments to probe gas-rich accretion processes in the era of large integral-field spectroscopic surveys

    Spatially resolved variations of the IMF mass normalization in early-type galaxies as probed by molecular gas kinematics

    Get PDF
    We here present the first spatially-resolved study of the IMF in external galaxies derived using a dynamical tracer of the mass-to-light ratio. We use the kinematics of relaxed molecular gas discs in seven early-type galaxies (ETGs) selected from the ATLAS3D survey to dynamically determine mass-to-light ratio (M/L) gradients. These M/L gradients are not very strong in the inner parts of these objects, and galaxies that do show variations are those with the highest specific star formation rates. Stellar population parameters derived from star formation histories are then used in order to estimate the stellar initial mass function function (IMF) mismatch parameter, and shed light on its variation within ETGs. Some of our target objects require a light IMF, otherwise their stellar population masses would be greater than their dynamical masses. In contrast, other systems seem to require heavier IMFs to explain their gas kinematics. Our analysis again confirms that IMF variation seems to be occurring within massive ETGs. We find good agreement between our IMF normalisations derived using molecular gas kinematics and those derived using other techniques. Despite this, we do not see find any correlation between the IMF normalisation and galaxy dynamical properties or stellar population parameters, either locally or globally. In the future larger studies which use molecules as tracers of galaxy dynamics can be used to help us disentangle the root cause of IMF variation

    Labeless and reversible immunosensor assay based upon an electrochemical current-transient protocol

    Get PDF
    A novel labeless and reversible immunoassay based upon an electrochemical current-transient protocol is reported which offers many advantages in comparison to classical immuno-biochemical analyses in terms of simplicity, speed of response, reusability and possibility of multiple determinations. Conducting polypyrrole films containing antibodies against 1) Bovine Serum Albumin (BSA) and 2) Digoxin were deposited on the surface of platinum electrodes to produce conductive affinity matrices having clearly defined binding characteristics. The deposition process has been investigated using 125I labelled anti-digoxin to determine optimal fabrication protocols. Antibody integrity and activity, together with non-specific binding of antigen on the conducting matrix have also been investigated using tritiated digoxin to probe polypyrrole/anti-digoxin films. Amperometric responses to digoxin were recorded in flow conditions using these films, but the technique was limited in use mainly due to baseline instability. Anti-BSA - polypyrrole matrices were investigated in more detail in both flow and quiescent conditions. No observable response was found in flow conditions, however under quiescent conditions (in non-stirred batch cell), anti-BSA – polypyrrole films have been demonstrated to function as novel quantitative chronoamperometric immuno-biosensors when interrogated using a pulsed potential waveform. The behaviour of the electrodes showed that the antibody/antigen binding and/or interaction process underlying the response observed was reversible in nature, indicating that the electrodes could be used for multiple sensing protocols. Calibration profiles for BSA demonstrated linearity for a concentration range of 0-50 ppm but tended towards a plateau at higher concentrations. Factors relating to replicate sensor production, sample measurement and reproducibility are discuss
    • …
    corecore