220 research outputs found

    Actual Test Coverage for Embedded Systems

    Get PDF
    Testing embedded systems is inherently incomplete; no test suite will ever be able to test all possible usage scenarios. Therefore, in the past decades many coverage measures have been developed. These measures denote the portion of a system that is tested, that way providing a quality criterion for test suites. Formulating coverage criteria is not an easy task. The measures provided in the literature are consequently almost all very trivial and syntax-dependent. Well-known examples are statement and path coverage in white-box testing, and state and transition coverage in black-box testing. The complexity of designing coverage measures for embedded systems is contained in the highly dynamic behaviour of such systems, which is state-dependent and subject to many interleavings. In this talk we introduce a framework on actual test coverage. This measure denotes the number of faults actually shown present or absent. Our framework contains a method to evaluate the actual coverage of a given set of test suite executions after testing has taken place, providing a means to express the quality of a testing process. It also contains a method to predict the actual coverage a certain number of executions will yield, providing a means to select the best test suite. Both the evaluation afterwards and the prediction in advance are quite efficient, making it feasible to implement the theory in a tool and use it in a practical context

    SCOOP: A Tool for SymboliC Optimisations Of Probabilistic Processes

    Get PDF
    This paper presents SCOOP: a tool that symbolically optimises process-algebraic specifications of probabilistic processes. It takes specifications in the prCRL language (combining data and probabilities), which are linearised first to an intermediate format: the LPPE. On this format, optimisations such as dead-variable reduction and confluence reduction are applied automatically by SCOOP. That way, drastic state space reductions are achieved while never having to generate the complete state space, as data variables are unfolded only locally. The optimised state spaces are ready to be analysed by for instance CADP or PRISM

    Confluence versus Ample Sets in Probabilistic Branching Time

    Get PDF
    To improve the efficiency of model checking in general, and probabilistic model checking in particular, several reduction techniques have been introduced. Two of these, confluence reduction and partial-order reduction by means of ample sets, are based on similar principles, and both preserve branching-time properties for probabilistic models. Confluence reduction has been introduced for probabilistic automata, whereas ample set reduction has been introduced for Markov decision processes. In this presentation we will explore the relationship between confluence and ample sets. To this end, we redefine confluence reduction to handle MDPs. We show that all non-trivial ample sets consist of confluent transitions, but that the converse is not true. We also show that the two notions coincide if the definition of confluence is restricted, and point out the relevant parts where the two theories differ. The results we present also hold for non-probabilistic models, as our theorems can just as well be applied in a context where all transitions are non-probabilistic. To show a practical application of our results, we adapt a state space generation technique based on representative states, already known in combination with confluence reduction, so that it can also be applied with partial-order reduction

    Model-based Testing

    Get PDF
    This paper provides a comprehensive introduction to a framework for formal testing using labelled transition systems, based on an extension and reformulation of the ioco theory introduced by Tretmans. We introduce the underlying models needed to specify the requirements, and formalise the notion of test cases. We discuss conformance, and in particular the conformance relation ioco. For this relation we prove several interesting properties, and we provide algorithms to derive test cases (either in batches, or on the fly)

    Confluence Reduction for Probabilistic Systems (extended version)

    Get PDF
    This paper presents a novel technique for state space reduction of probabilistic specifications, based on a newly developed notion of confluence for probabilistic automata. We prove that this reduction preserves branching probabilistic bisimulation and can be applied on-the-fly. To support the technique, we introduce a method for detecting confluent transitions in the context of a probabilistic process algebra with data, facilitated by an earlier defined linear format. A case study demonstrates that significant reductions can be obtained

    Lesson study - deel 3. Ervaringen bij de introductie van periodieke bewegingen

    Get PDF
    Het eerste artikel in deze serie ging over 'lesson study' als methode om het vak van docent te leren of blijvend te verbeteren. Het tweede artikel beschreef de ervaringen met bewijzen in de meetkunde (zie de paragraaf Info). Dit derde artikel gaat in op lesontwerpen die gaan over de overgang van een meetkundige benadering van de (co)sinus naar de analytische benadering in de vorm van een periodieke beweging. Een onderwerp dat in 4-vwo aan de orde zou komen, en dat de docenten na aan het hart lag

    On-the-fly confluence detection for statistical model checking (extended version)

    Get PDF
    Statistical model checking is an analysis method that circumvents the state space explosion problem in model-based verification by combining probabilistic simulation with statistical methods that provide clear error bounds. As a simulation-based technique, it can only provide sound results if the underlying model is a stochastic process. In verification, however, models are usually variations of nondeterministic transition systems. The notion of confluence allows the reduction of such transition systems in classical model checking by removing spurious nondeterministic choices. In this paper, we show that confluence can be adapted to detect and discard such choices on-the-fly during simulation, thus extending the applicability of statistical model checking to a subclass of Markov decision processes. In contrast to previous approaches that use partial order reduction, the confluence-based technique can handle additional kinds of nondeterminism. In particular, it is not restricted to interleavings. We evaluate our approach, which is implemented as part of the modes simulator for the Modest modelling language, on a set of examples that highlight its strengths and limitations and show the improvements compared to the partial order-based method

    A comparison of confluence and ample sets in probabilistic and non-probabilistic branching time

    Get PDF
    Confluence reduction and partial order reduction by means of ample sets are two different techniques for state space reduction in both traditional and probabilistic model checking. This paper provides an extensive comparison between these two methods, and answers the question how they relate in terms of reduction power when preserving branching time properties. We prove that, while both preserve the same properties, confluence reduction is strictly more powerful than partial order reduction: every reduction that can be obtained with partial order reduction can also be obtained with confluence reduction, but the converse is not true. The main challenge for the comparison is that confluence reduction was defined in an action-based setting, whereas ample set reduction is often defined in a state-based setting. We therefore redefine confluence reduction in the state-based setting of Markov decision processes, and provide a nontrivial proof of its correctness. Additionally, we pinpoint precisely in what way confluence reduction is more general, and provide conditions under which the two notions coincide. The results we present also hold for non-probabilistic models, as they can just as well be applied in a context where all transitions are non-probabilistic. To discuss the practical applicability of our results, we adapt a state space generation technique based on representative states, already known in combination with confluence reduction, so that it can also be applied to ample sets

    Efficient Modelling and Generation of Markov Automata (extended version)

    Get PDF
    This paper introduces a framework for the efficient modelling and generation of Markov automata. It consists of (1) the data-rich process-algebraic language MAPA, allowing concise modelling of systems with nondeterminism, probability and Markovian timing; (2) a restricted form of the language, the MLPPE, enabling easy state space generation and parallel composition; and (3) several syntactic reduction techniques on the MLPPE format, for generating equivalent but smaller models. Technically, the framework relies on an encoding of MAPA into the existing prCRL language for probabilistic automata. First, we identify a class of transformations on prCRL that can be lifted to the Markovian realm using our encoding. Then, we employ this result to reuse prCRL's linearisation procedure to transform any MAPA specification to an equivalent MLPPE, and to lift three prCRL reduction techniques to MAPA. Additionally, we define two novel reduction techniques for MLPPEs. All our techniques treat data as well as Markovian and interactive behaviour in a fully symbolic manner, working on specifications instead of models and thus reducing state spaces prior to their construction. The framework has been implemented in our tool SCOOP, and a case study on polling systems and mutual exclusion protocols shows its practical applicability
    corecore