54 research outputs found

    3D fractals as SERS active platforms: Preparation and evaluation for gas phase detection of G-nerve agents

    Get PDF
    One of the main limitations of the technique surface-enhanced Raman scattering (SERS) for chemical detection relies on the homogeneity, reproducibility and reusability of the substrates. In this work, SERS active platforms based on 3D-fractal microstructures is developed by combining corner lithography and anisotropic wet etching of silicon, to extend the SERS-active area into 3D, with electrostatically driven Au@citrate nanoparticles (NPs) assembly, to ensure homogeneous coating of SERS active NPs over the entire microstructured platforms. Strong SERS intensities are achieved using 3D-fractal structures compared to 2D-planar structures; leading to SERS enhancement factors for R6G superior than those merely predicted by the enlarged area effect. The SERS performance of Au monolayer-over-mirror configuration is demonstrated for the label-free real-time gas phase detection of 1.2 ppmV of dimethyl methylphosphonate (DMMP), a common surrogate of G-nerve agents. Thanks to the hot spot accumulation on the corners and tips of the 3D-fractal microstructures, the main vibrational modes of DMMP are clearly identified underlying the spectral selectivity of the SERS technique. The Raman acquisition conditions for SERS detection in gas phase have to be carefully chosen to avoid photo-thermal effects on the irradiated area

    Controlled Doping Methods for Radial p/n Junctions in Silicon

    Get PDF
    P/n and n/p junctions with depths of 200 nm to several micrometers have been created in flat silicon substrates as well as on 3D microstructures by means of a variety of methods, including solid source dotation (SSD), low-pressure chemical vapor deposition (LPCVD), atmospheric pressure chemical vapor deposition, and plasma-enhanced chemical vapor deposition. Radial junctions in Si micropillars are inspected by optical and scanning electron micro­scopies, using a CrO3-based staining solution, which enables visualization of the junction depth. When applying identical-doping parameters to flat substrates, ball grooving, followed by staining and optical microscopy, yields similar junction depth values as high-resolution scanning electron microscopy imaging on stained cross-sections and secondary ion mass spectrometry depth profilometry. For the investigated 3D microstructures, doping based on SSD and LPCVD give uniform and conformal junctions. Junctions made with SSD-boron doping and CVD-phosphorus doping could be accurately predicted with a model based on Fick's diffusion law. 3D-microstructured silicon pillar arrays show an increased efficiency for sunlight capturing. The functionality of micropillar arrays with radial junctions is evidenced by improved short-circuit current densities and photovoltaic efficiencies compared with flat surfaces, for both n- and p-type wafers (average pillar arrays efficiencies of 9.4% and 11%, respectively, compared with 8.3% and 6.4% for the flat samples)

    Partial reduction of anthracene by cold field emission in liquid in a microreactor with an integrated planar microstructured electrode

    Get PDF
    We report a novel microreactor with a photolithographically defined integrated electrode containing micro tips that serve as emission points for solvated electrons into liquid n-hexane in a microfluidic channel. The implementation of sharp electrode tips permits to extract electrons from the electrode material at relatively low voltages. The electric field distribution in the gap between a planar patterned platinum microtip array and a planar rectangular counterelectrode is analyzed by a computational model. Cold field emission using these microdevices is experimentally verified, and the partial reduction of anthracene to 9,10-dihydroanthracene, via solvated electrons emitted in solutions with or without ethanol in n-hexane is investigated. It is found that in the current microreactor configuration, the majority of the products are products originating from coupling of ethanol fragments to, and/or oxidation of 9,10-dihydroanthracene at the platinum counterelectrode, leaving no detectable yield of the desired reduction product

    Gas–liquid dynamics at low Reynolds numbers in pillared rectangular micro channels

    Get PDF
    Most heterogeneously catalyzed gas–liquid reactions in micro channels are chemically/kinetically limited because of the high gas–liquid and liquid–solid mass transfer rates that can be achieved. This motivates the design of systems with a larger surface area, which can be expected to offer higher reaction rates per unit volume of reactor. This increase in surface area can be realized by using structured micro channels. In this work, rectangular micro channels containing round pillars of 3 μm in diameter and 50 μm in height are studied. The flow regimes, gas hold-up, and pressure drop are determined for pillar pitches of 7, 12, 17, and 27 μm. Flow maps are presented and compared with flow maps of rectangular and round micro channels without pillars. The Armand correlation predicts the gas hold-up in the pillared micro channel within 3% error. Three models are derived which give the single-phase and the two-phase pressure drop as a function of the gas and liquid superficial velocities and the pillar pitches. For a pillar pitch of 27 μm, the Darcy-Brinkman equation predicts the single-phase pressure drop within 2% error. For pillar pitches of 7, 12, and 17 μm, the Blake-Kozeny equation predicts the single-phase pressure drop within 20%. The two-phase pressure drop model predicts the experimental data within 30% error for channels containing pillars with a pitch of 17 μm, whereas the Lockhart–Martinelli correlation is proven to be non-applicable for the system used in this work. The open structure and the higher production rate per unit of reactor volume make the pillared micro channel an efficient system for performing heterogeneously catalyzed gas–liquid reaction

    Three-dimensional fractal geometry for gas permeation in microchannels

    Get PDF
    The novel concept of a microfluidic chip with an integrated three-dimensional fractal geometry with nanopores, acting as a gas transport membrane, is presented. The method of engineering the 3D fractal structure is based on a combination of anisotropic etching of silicon and corner lithography. The permeation of oxygen and carbon dioxide through the fractal membrane is measured and validated theoretically. The results show high permeation flux due to low resistance to mass transfer because of the hierarchical branched structure of the fractals, and the high number of the apertures. This approach offers an advantage of high surface to volume ratio and pores in the range of nanometers. The obtained results show that the gas permeation through the nanonozzles in the form of fractal geometry is remarkably enhanced in comparison to the commonly-used polydimethylsiloxane (PDMS) dense membrane. The developed chip is envisioned as an interesting alternative for gas-liquid contactors that require harsh conditions, such as microreactors or microdevices, for energy applications

    Droplet microreactor for reaction monitoring at elevated temperatures and pressure

    Get PDF
    Recording reaction kinetics in detail and at various reaction conditions can be a time-consuming process. Microdroplets form ideal reaction chambers, suitable for high-throughput studies [1]. We report the fabrication of a microfluidic droplet-based microreactor operating at elevated temperatures (up to 130 °C) and pressures (up to 0.7 MPa), to rapidly study reaction kinetics. As proof-of-principle, the temperature-dependent fluorescence of Rhodamine B in ethanol is monitored [2]. Time-resolved information is obtained by measuring at multiple spots in the microreacto

    De effectiviteit van nieuwe media: vage beloften of reele potenties.

    No full text

    Fluorescent cyanine dyes for the quantification of low amounts of dsDNA

    Get PDF
    In this research six cyanine fluorophores for the quantification of dsDNA in the pg-ng range, without amplification, are compared under exactly identical conditions: EvaGreen, SYBR Green, PicoGreen, AccuClear, AccuBlue NextGen and YOYO-1. The fluorescence intensity as a function of the amount of dsDNA is measured at the optimal wavelengths for excitation and emission and for each dye the limit of detection and the response linearity at low levels of dsDNA are determined. No linear range was found for SYBR Green and YOYO-1 for pg-ng quantities of dsDNA. EvaGreen, PicoGreen, AccuClear and AccuBlue NextGen show good linearity in the pg-ng range. AccuClear exhibits the widest linear range of 3 pg–200 ng, whereas AccuBlue NextGen turned out to have the highest sensitivity of the tested dyes with a limit of detection of 50 pg

    Applicability of X-ray fluorescence spectroscopy as method to determine thickness and composition of stacks of metal thin films: A comparison with imaging and profilometry

    Get PDF
    In this work the applicability of X-ray fluorescence spectroscopy (XRF) for fast, accurate and non-destructive determination of the thickness of a variety of single-layer and multi-layer metal thin films deposited on glass and silicon is investigated. Data obtained with XRF is compared with information from profilometry and images from scanning electron microscopy (SEM). Whereas thickness determinations based on profilometry and cross-sectional SEM-imaging have restrictions with respect to thickness of metal stacks or hardness of the metals, XRF has no such limitations. Moreover, XRF can discriminate between sublayers in a multi-layer film, and can also be utilized for compositional analysis and density estimations. Good agreement between thickness data obtained with XRF, profilometry and SEM-images is found, under the justifiable assumption that the density of sputter-deposited and evaporated thin films is ca. 5% below that of bulk metals. Similar XRF-results are found for non-patterned areas (64 mm2 metal) as well as lithographically patterned areas containing a series of small metal lines (total metal surface ca. 8 mm2). As a consequence, it is concluded that XRF is a versatile technique for analysis, verification, control or evaluation of the thickness, density or (elemental) composition of thin metal film line-patterns, during their fabrication as well as prior or post to applications
    • …
    corecore