120 research outputs found

    Non-specific binding of antibodies in immunohistochemistry: Fakes and facts

    Get PDF
    Protocols for blocking non-specific antibody (Ab) binding in immunohistochemistry are based on rather contradictory and outdated reports. This prompted us to prove, whether non-specific Ab binding may really lead to unwanted background staining in routinely processed cell and tissue probes. In this study, the probes were fixed and processed according to routine protocols with and without a blocking step (goat serum or BSA). Surprisingly, all Ab in probes processed without a blocking step did not show any propensity towards non-specific binding that might lead to background staining, thus implying that endogenous Fc receptors do not retain their ability to bind Fc portion of Ab after standard fixation. Likewise in routinely fixed probes, we did not find any non-specific Ab binding ascribed to a combination of ionic and hydrophobic interactions. The traditionally used protein blocking step is useless in immunostaining of routinely fixed tissues

    Mixing of 0(+) and 0(-) observed in the hyperfine and Zeeman structure of ultracold Rb-2 molecules

    Get PDF
    We study the combination of the hyperfine and Zeeman structure in the spin-orbit coupled A(1)Sigma(+)(u) = b(3)Pi(u) complex of Rb-87(2). For this purpose, absorption spectroscopy at a magnetic field around B = 1000 G is carried out. We drive optical dipole transitions from the lowest rotational state of an ultracold Feshbach molecule to various vibrational levels with 0(+) symmetry of the A - b complex. In contrast to previous measurements with rotationally excited alkali-dimers, we do not observe equal spacings of the hyperfine levels. In addition, the spectra vary substantially for different vibrational quantum numbers, and exhibit large splittings of up to 160 MHz, unexpected for 0(+) states. The level structure is explained to be a result of the repulsion between the states 0(+) and 0(-) of b(3)Pi(u), coupled via hyperfine and Zeeman interactions. In general, 0(-) and 0(+) have a spin-orbit induced energy spacing Delta, that is different for the individual vibrational states. From each measured spectrum we are able to extract Delta, which otherwise is not easily accessible in conventional spectroscopy schemes. We obtain values of Delta in the range of +/- 100 GHz which can be described by coupled channel calculations if a spin-orbit coupling is introduced that is different for 0(-) and 0(+) of b(3)Pi(u).DFGMinistry of Science and Culture of Lower Saxony, German

    Brain oscillations differentially encode noxious stimulus intensity and pain intensity

    Get PDF
    Noxious stimuli induce physiological processes which commonly translate into pain. However, under certain conditions, pain intensity can substantially dissociate from stimulus intensity, e.g. during longer-lasting pain in chronic pain syndromes. How stimulus intensity and pain intensity are differentially represented in the human brain is, however, not yet fully understood. We therefore used electroencephalography (EEG) to investigate the cerebral representation of noxious stimulus intensity and pain intensity during 10 min of painful heat stimulation in 39 healthy human participants. Time courses of objective stimulus intensity and subjective pain ratings indicated a dissociation of both measures. EEG data showed that stimulus intensity was encoded by decreases of neuronal oscillations at alpha and beta frequencies in sensorimotor areas. In contrast, pain intensity was encoded by gamma oscillations in the medial prefrontal cortex. Contrasting right versus left hand stimulation revealed that the encoding of stimulus intensity in contralateral sensorimotor areas depended on the stimulation side. In contrast, a conjunction analysis of right and left hand stimulation revealed that the encoding of pain in the medial prefrontal cortex was independent of the side of stimulation. Thus, the translation of noxious stimulus intensity into pain is associated with a change from a spatially specific representation of stimulus intensity by alpha and beta oscillations in sensorimotor areas to a spatially independent representation of pain by gamma oscillations in brain areas related to cognitive and affective-motivational processes. These findings extend the understanding of the brain mechanisms of nociception and pain and their dissociations during longer-lasting pain as a key symptom of chronic pain syndromes

    Prefrontal gamma oscillations encode tonic pain in humans

    Get PDF
    Under physiological conditions, momentary pain serves vital protective functions. Ongoing pain in chronic pain states, on the other hand, is a pathological condition that causes widespread suffering and whose treatment remains unsatisfactory. The brain mechanisms of ongoing pain are largely unknown. In this study, we applied tonic painful heat stimuli of varying degree to healthy human subjects, obtained continuous pain ratings, and recorded electroencephalograms to relate ongoing pain to brain activity. Our results reveal that the subjective perception of tonic pain is selectively encoded by gamma oscillations in the medial prefrontal cortex. We further observed that the encoding of subjective pain intensity experienced by the participants differs fundamentally from that of objective stimulus intensity and from that of brief pain stimuli. These observations point to a role for gamma oscillations in the medial prefrontal cortex in ongoing, tonic pain and thereby extend current concepts of the brain mechanisms of pain to the clinically relevant state of ongoing pain. Furthermore, our approach might help to identify a brain marker of ongoing pain, which may prove useful for the diagnosis and therapy of chronic pain

    Primary NK/T cell lymphoma nasal type of the stomach with skin involvement: a case report

    Get PDF
    Since nasal NK/T cell lymphoma and NK/T cell lymphoma nasal type are rare diseases, gastric involvement has seldom been seen. We report a unique case of a patient with a primary NK/T cell lymphoma nasal type of the stomach with skin involvement. The patient had no history of malignant diseases and was diagnosed with hematemesis and intense bleeding from his gastric primary site. Shortly after this event, exanthemic skin lesions appeared with concordant histology to the primary site. Despite chemotherapy, the patient died one month after the first symptomatic appearance of disease

    Distinct patterns of brain activity mediate perceptual and motor and autonomic responses to noxious stimuli

    Get PDF
    Pain is a complex phenomenon involving perceptual, motor, and autonomic responses, but how the brain translates noxious stimuli into these different dimensions of pain is unclear. Here, we assessed perceptual, motor, and autonomic responses to brief noxious heat stimuli and recorded brain activity using electroencephalography (EEG) in humans. Multilevel mediation analysis reveals that each pain dimension is subserved by a distinct pattern of EEG responses and, conversely, that each EEG response differentially contributes to the different dimensions of pain. In particular, the translation of noxious stimuli into autonomic and motor responses involved the earliest N1 wave, whereas pain perception was mediated by later N2 and P2 waves. Gamma oscillations mediated motor responses rather than pain perception. These findings represent progress towards a mechanistic understanding of the brain processes translating noxious stimuli into pain and suggest that perceptual, motor, and autonomic dimensions of pain are partially independent rather than serial processes

    Neural oscillations and connectivity characterizing the state of tonic experimental pain in humans

    Get PDF
    Pain is a complex phenomenon that is served by neural oscillations and connectivity involving different brain areas and frequencies. Here, we aimed to systematically and comprehensively assess the pattern of neural oscillations and connectivity characterizing the state of tonic experimental pain in humans. To this end, we applied 10-min heat pain stimuli consecutively to the right and left hand of 39 healthy participants and recorded electroencephalography. We systematically analyzed global and local measures of oscillatory brain activity, connectivity, and graph theory-based network measures during tonic pain and compared them to a nonpainful control condition. Local measures showed suppressions of oscillatory activity at alpha frequencies together with stronger connectivity at alpha and beta frequencies in sensorimotor areas during tonic pain. Furthermore, sensorimotor areas contralateral to stimulation showed significantly increased connectivity to a common area in the medial prefrontal cortex at alpha frequencies. Together, these observations indicate that the state of tonic experimental pain is associated with a sensorimotor-prefrontal network connected at alpha frequencies. These findings represent a step further toward understanding the brain mechanisms underlying long-lasting pain states in health and disease

    Energy-scaling of the product state distribution for three-body recombination of ultracold atoms

    Get PDF
    Three-body recombination is a chemical reaction where the collision of three atoms leads to the formation of a diatomic molecule. In the ultracold regime it is expected that the production rate of a molecule generally decreases with its binding energy EbE_b, however, its precise dependence and the physics governing it have been left unclear so far. Here, we present a comprehensive experimental and theoretical study of the energy dependency for three-body recombination of ultracold Rb. For this, we determine production rates for molecules in a state-to-state resolved manner, with the binding energies EbE_b ranging from 0.02 to 77 GHz×h\times h. We find that the formation rate approximately scales as Eb−αE_b^{-\alpha}, where α\alpha is in the vicinity of 1. The formation rate typically varies only within a factor of two for different rotational angular momenta of the molecular product, apart from a possible centrifugal barrier suppression for low binding energies. In addition to numerical three-body calculations we present a perturbative model which reveals the physical origin of the energy scaling of the formation rate. Furthermore, we show that the scaling law potentially holds universally for a broad range of interaction potentials.Comment: 15 pages, 13 figure
    • …
    corecore