9 research outputs found

    Interjet Energy Flow/Event Shape Correlations

    Get PDF
    We identify a class of perturbatively computable measures of interjet energy flow, which can be associated with well-defined color flow at short distances. As an illustration, we calculate correlations between event shapes and the flow of energy, Q_Omega, into an interjet angular region, Omega, in high-energy two-jet e^+e^- -annihilation events. Laplace transforms with respect to the event shapes suppress states with radiation at intermediate energy scales, so that we may compute systematically logarithms of interjet energy flow. This method provides a set of predictions on energy radiated between jets, as a function of event shape and of the choice of the region Omega in which the energy is measured. Non-global logarithms appear as corrections. We apply our method to a continuous class of event shapes.Comment: 9 pages, 5 figures. Based on talk given by C.F. Berger at TH-2002, International Conference on Theoretical Physics, Theme 2: "QCD, Hadron dynamics, etc.", Paris, France, 2002. Slight changes to text, reference adde

    Energy Flow in Interjet Radiation

    Get PDF
    We study the distribution of transverse energy, Q_Omega, radiated into an arbitrary interjet angular region, Omega, in high-p_T two-jet events. Using an approximation that emphasizes radiation directly from the partons that undergo the hard scattering, we find a distribution that can be extrapolated smoothly to Q_Omega=Lambda_QCD, where it vanishes. This method, which we apply numerically in a valence quark approximation, provides a class of predictions on transverse energy radiated between jets, as a function of jet energy and rapidity, and of the choice of the region Omega in which the energy is measured. We discuss the relation of our approximation to the radiation from unobserved partons of intermediate energy, whose importance was identified by Dasgupta and Salam.Comment: 26 pages, 8 eps figures. Revised to include a discussion of non-global logarithm

    Event Shape/Energy Flow Correlations

    Full text link
    We introduce a set of correlations between energy flow and event shapes that are sensitive to the flow of color at short distances in jet events. These correlations are formulated for a general set of event shapes, which includes jet broadening and thrust as special cases. We illustrate the method for electron-positron annihilation dijet events, and calculate the correlation at leading logarithm in the energy flow and at next-to-leading-logarithm in the event shape.Comment: 43 pages, eight eps figures; minor changes, references adde
    corecore