2 research outputs found

    An Extracytoplasmic Function Sigma Factor Controls β-Lactamase Gene Expression in Bacillus anthracis and Other Bacillus cereus Group Species▿ †

    No full text
    The susceptibility of most Bacillus anthracis strains to β-lactam antibiotics is intriguing considering that the closely related species Bacillus cereus and Bacillus thuringiensis typically produce β-lactamases and the B. anthracis genome harbors two β-lactamase genes, bla1 and bla2. We show that β-lactamase activity associated with B. anthracis is affected by two genes, sigP (BA2502) and rsiP (BA2503), predicted to encode an extracytoplasmic function sigma factor and an anti-sigma factor, respectively. Deletion of the sigP-rsiP locus abolished β-lactamase activity in a naturally occurring penicillin-resistant strain and had no effect on β-lactamase activity in a prototypical penicillin-susceptible strain. Complementation with sigP and rsiP from the penicillin-resistant strain, but not with sigP and rsiP from the penicillin-susceptible strain, conferred constitutive β-lactamase activity in both mutants. These results are attributed to a nucleotide deletion near the 5′ end of rsiP in the penicillin-resistant strain that is predicted to result in a nonfunctional protein. B. cereus and B. thuringiensis sigP and rsiP homologues are required for inducible penicillin resistance in these species. Expression of the B. cereus or B. thuringiensis sigP and rsiP genes in a B. anthracis sigP-rsiP-null mutant confers inducible production of β-lactamase activity, suggesting that while B. anthracis contains the genes necessary for sensing β-lactam antibiotics, the B. anthracis sigP and rsiP gene products are not sufficient for bla induction

    Parent tRNA Modification Status Determines the Induction of Functional tRNA-Derived RNA by Respiratory Syncytial Virus Infection

    No full text
    tRNA-derived RNA fragments (tRFs) are a recently discovered family of small noncoding RNAs (sncRNAs). We previously reported that respiratory syncytial virus (RSV) infection induces functional tRFs, which are derived from a limited subset of parent tRNAs, in airway epithelial cells. Such induction is also observed in nasopharyngeal wash samples from RSV patients and correlates to RSV genome copies, suggesting a clinical significance of tRFs in RSV infection. This work also investigates whether the modification of parent tRNAs is changed by RSV to induce tRFs, using one of the most inducible tRFs as a model. We discovered that RSV infection changed the methylation modification of adenine at position 57 in tRNA glutamic acid, with a codon of CTC (tRNA-GluCTC), and the change is essential for its cleavage. AlkB homolog 1, a previously reported tRNA demethylase, appears to remove methyladenine from tRNA-GluCTC, prompting the subsequent production of tRFs from the 5′-end of tRNA-GluCTC, a regulator of RSV replication. This study demonstrates for the first time the importance of post-transcriptional modification of tRNAs in tRF biogenesis following RSV infection, providing critical insights for antiviral strategy development
    corecore