43 research outputs found
Detecting Viral Genomes in the Female Urinary Microbiome
Viruses are the most abundant component of the human microbiota. Recent evidence has uncovered a rich diversity of viruses within the female bladder, including both bacteriophages and eukaryotic viruses. We conducted whole-genome sequencing of the bladder microbiome of 30 women: 10 asymptomatic ‘healthy’ women and 20 women with an overactive bladder. These metagenomes include sequences representative of human, bacterial and viral DNA. This analysis, however, focused specifically on viral sequences. Using the bioinformatic tool virMine, we discovered sequence fragments, as well as complete genomes, of bacteriophages and the eukaryotic virus JC polyomavirus. The method employed here is a critical proof of concept: the genomes of viral populations within the low-biomass bladder microbiota can be reconstructed through whole-genome sequencing of the entire microbial community
Genome Investigation of Urinary Gardnerella Strains and Their Relationship to Isolates of the Vaginal Microbiota
Gardnerella is a frequent member of the urogenital microbiota. Given the association between Gardnerella vaginalis and bacterial vaginosis (BV), significant efforts have been focused on characterizing this species in the vaginal microbiota. However, Gardnerella also is a frequent member of the urinary microbiota. In an effort to characterize the bacterial species of the urinary microbiota, we present here 10 genomes of urinary Gardnerella isolates from women with and without lower uri- nary tract symptoms. These genomes complement those of 22 urinary Gardnerella strains previously isolated and sequenced by our team. We included these genomes in a comparative genome analysis of all publicly available Gardnerella genomes, which include 33 urinary isolates, 78 vaginal isolates, and 2 other isolates. While once this genus was thought to consist of a single species, recent comparative ge- nome analyses have revealed 3 new species and an additional 9 groups within Gardnerella. Based upon our analysis, we suggest a new group for the species. We also find that distinction between these Gardnerella species/groups is possible only when considering the core or whole-genome sequence, as neither the sialidase nor vaginolysin genes are sufficient for distinguishing between species/groups despite their clinical importance. In contrast to the vaginal microbiota, we found that only five Gardnerella species/groups have been detected within the lower urinary tract. Although we found no association between a particular Gardnerella species/group(s) and urinary symptoms, further sequencing of urinary Gardnerella isolates is needed for both comprehensive taxonomic characterization and etiological classification of Gardnerella in the urinary tract. Importance Prior research into the bacterium Gardnerella vaginalis has largely focused on its association with bacterial vaginosis (BV). However, G. vaginalis is also frequently found within the urinary microbiota of women with and without lower urinary tract symptoms as well as individuals with chronic kidney disease, interstitial cystitis, and BV. This prompted our investigation into Gardnerella from the urinary microbiota and all publicly available Gardnerella genomes from the urogenital tract. Our work suggests that while some Gardnerella species can survive in both the urinary tract and vagina, others likely cannot. This study provides the foundation for future studies of Gardnerella within the urinary tract and its possible contribution to lower urinary tract symptoms
Bacteriophages of the Urinary Microbiome
Bacterial viruses (bacteriophages) play a significant role in microbial community dynamics. Within the human gastrointestinal tract, for instance, associations amongst bacteriophages (phages), microbiota stability, and human health have been discovered. In contrast to the gastrointestinal tract, the phages associated with the urinary microbiota are largely unknown. Preliminary metagenomic surveys of the urinary virome indicate a rich diversity of novel lytic phage sequences, at an abundance far outnumbering eukaryotic viruses. These surveys, however, exclude the lysogenic phages residing within the bacteria of the bladder. To characterize this phage population, we examined 181 genomes representative of the phylogenetic diversity of bacterial species within the female urinary microbiota and found 457 phage sequences, 226 of which were predicted with high confidence. Phages were prevalent within the bladder bacteria: 86% of the genomes examined contained at least one phage sequence. Most of these phages are novel, exhibiting no discernible sequence homology to public data repositories. The presence of phages with substantial sequence similarity within the microbiota of different women supports the existence of a core community of phages within the bladder. Furthermore, the observed variation between the phage populations of women with and without overactive bladder symptoms suggests that phages may contribute to urinary health. To complement our bioinformatic analyses, viable phages were cultivated from the bacterial isolates for characterization; a novel coliphage was isolated, which is obligately lytic in the laboratory strain E. coli C. Sequencing of bacterial genomes facilitates a comprehensive cataloguing of the urinary virome while also revealing phage-host interactions.Importance Bacteriophages are abundant within the human body. But while some niches have been well surveyed, the phage population within the urinary microbiome is largely unknown. Our study is the first survey of the lysogenic phage population within the urinary microbiota. Most notably, the abundance of prophage exceeds that of the bacteria. Furthermore, many of the prophage sequences identified exhibited no recognizable sequence homology to data repositories. This suggests a rich diversity of uncharacterized phage species present in the bladder. Additionally, we observed a variation in the abundance of phages between bacteria isolated from asymptomatic \u27healthy\u27 individuals and those with urinary symptoms thus suggesting that, like phages within the gut, phages within the bladder may contribute to urinary health
Aerococcus urinae isolated from women with lower urinary tract symptoms: In vitro aggregation and genome analysis
Aerococcus urinae is increasingly recognized as a potentially significant urinary tract bacterium. A. urinae has been isolated from urine collected from both males and females with a wide range of clinical conditions, including urinary tract infection (UTI), urgency urinary incontinence (UUI), and overactive bladder (OAB). A. urinae is of particular clinical concern because it is highly resistant to many antibiotics and, when undiagnosed, can cause invasive and life-threatening bacteremia, sepsis, or soft tissue infections. Previous genomic characterization studies have examined A. urinae strains isolated from patients experiencing UTI episodes. Here, we analyzed the genomes of A. urinae strains isolated as part of the urinary microbiome from patients with UUI or OAB. Furthermore, we report that certain A. urinae strains exhibit aggregative in vitro phenotypes, including flocking, which can be modified by various growth medium conditions. Finally, we performed in-depth genomic comparisons to identify pathways that distinguish flocking and nonflocking strains. IMPORTANCE Aerococcus urinae is a urinary bacterium of emerging clinical interest. Here, we explored the ability of 24 strains of A. urinae isolated from women with lower urinary tract symptoms to display aggregation phenotypes in vitro. We sequenced and analyzed the genomes of these A. urinae strains. We performed functional genomic analyses to determine whether the in vitro hyperflocking aggregation phenotype displayed by certain A. urinae strains was related to the presence or absence of certain pathways. Our findings demonstrate that A. urinae strains have different propensities to display aggregative properties in vitro and suggest a potential association between phylogeny and flocking
Genomes of Gardnerella Strains Reveal an Abundance of Prophages within the Bladder Microbiome
Bacterial surveys of the vaginal and bladder human microbiota have revealed an abundance of many similar bacterial taxa. As the bladder was once thought to be sterile, the complex interactions between microbes within the bladder have yet to be characterized. To initiate this process, we have begun sequencing isolates, including the clinically relevant genus Gardnerella. Herein, we present the genomic sequences of four Gardnerella strains isolated from the bladders of women with symptoms of urgency urinary incontinence; these are the first Gardnerella genomes produced from this niche. Congruent to genomic characterization of Gardnerella isolates from the reproductive tract, isolates from the bladder reveal a large pangenome, as well as evidence of high frequency horizontal gene transfer. Prophage gene sequences were found to be abundant amongst the strains isolated from the bladder, as well as amongst publicly available Gardnerella genomes from the vagina and endometrium, motivating an in depth examination of these sequences. Amongst the 39 Gardnerella strains examined here, there were more than 400 annotated prophage gene sequences that we could cluster into 95 homologous groups; 49 of these groups were unique to a single strain. While many of these prophages exhibited no sequence similarity to any lytic phage genome, estimation of the rate of phage acquisition suggests both vertical and horizontal acquisition. Furthermore, bioinformatic evidence indicates that prophage acquisition is ongoing within both vaginal and bladder Gardnerella populations. The abundance of prophage sequences within the strains examined here suggests that phages could play an important role in the species’ evolutionary history and in its interactions within the complex communities found in the female urinary and reproductive tracts
Recommended from our members
Forming consensus to advance urobiome research
Urobiome research has the potential to advance the understanding of a wide range of diseases, including lower urinary tract symptoms and kidney disease. Many scientific areas have benefited from early research method consensus to facilitate the greater, common good. This consensus document, developed by a group of expert investigators currently engaged in urobiome research (UROBIOME 2020 conference participants), aims to promote standardization and advances in this field by the adoption of common core research practices. We propose a standardized nomenclature as well as considerations for specimen collection, preservation, storage, and processing. Best practices for urobiome study design include our proposal for standard metadata elements as part of core metadata collection. Although it is impractical to follow fixed analytical procedures when analyzing urobiome data, we propose guidelines to document and report data originating from urobiome studies. We offer this first consensus document with every expectation of subsequent revision as our field progresses
Obstructive Sleep Apnea and Incidence of Postoperative Delirium after Elective Knee Replacement in the Nondemented Elderly
ABSTRACT Background: Postoperative delirium, a common complication in the elderly, can occur following any type of surgery and is associated with increased morbidity and mortality; it may also be associated with subsequent cognitive problems. Effective therapy for postoperative delirium remains elusive because the causative factors of delirium are likely multiple and varied. Methods: Patients 65 yr or older undergoing elective knee arthroplasty were prospectively evaluated for postoperative Diagnostic and Statistical Manual of Mental Disorders-IV delirium. Exclusion criteria included dementia, mini-mental state exam score less than 24, delirium, clinically significant central nervous system/neurologic disorder, current alcoholism, or any serious psychiatric disorder. Delirium was assessed on postoperative days 2 and 3 using standardized scales. Patients' preexisting medical conditions were obtained from medical charts. The occurrence of obstructiv
Recommended from our members
The bii4africa dataset of faunal and floral population intactness estimates across Africa’s major land uses
Sub-Saharan Africa is under-represented in global biodiversity datasets, particularly regarding the impact of land use on species’ population abundances. Drawing on recent advances in expert elicitation to ensure data consistency, 200 experts were convened using a modified-Delphi process to estimate ‘intactness scores’: the remaining proportion of an ‘intact’ reference population of a species group in a particular land use, on a scale from 0 (no remaining individuals) to 1 (same abundance as the reference) and, in rare cases, to 2 (populations that thrive in human-modified landscapes). The resulting bii4africa dataset contains intactness scores representing terrestrial vertebrates (tetrapods: ±5,400 amphibians, reptiles, birds, mammals) and vascular plants (±45,000 forbs, graminoids, trees, shrubs) in sub-Saharan Africa across the region’s major land uses (urban, cropland, rangeland, plantation, protected, etc.) and intensities (e.g., large-scale vs smallholder cropland). This dataset was co-produced as part of the Biodiversity Intactness Index for Africa Project. Additional uses include assessing ecosystem condition; rectifying geographic/ taxonomic biases in global biodiversity indicators and maps; and informing the Red List of Ecosystems
The bii4africa dataset of faunal and floral population intactness estimates across Africa’s major land uses
Sub-Saharan Africa is under-represented in global biodiversity datasets, particularly regarding the impact of land use on species’ population abundances. Drawing on recent advances in expert elicitation to ensure data consistency, 200 experts were convened using a modified-Delphi process to estimate ‘intactness scores’: the remaining proportion of an ‘intact’ reference population of a species group in a particular land use, on a scale from 0 (no remaining individuals) to 1 (same abundance as the reference) and, in rare cases, to 2 (populations that thrive in human-modified landscapes). The resulting bii4africa dataset contains intactness scores representing terrestrial vertebrates (tetrapods: ±5,400 amphibians, reptiles, birds, mammals) and vascular plants (±45,000 forbs, graminoids, trees, shrubs) in sub-Saharan Africa across the region’s major land uses (urban, cropland, rangeland, plantation, protected, etc.) and intensities (e.g., large-scale vs smallholder cropland). This dataset was co-produced as part of the Biodiversity Intactness Index for Africa Project. Additional uses include assessing ecosystem condition; rectifying geographic/taxonomic biases in global biodiversity indicators and maps; and informing the Red List of Ecosystems