960 research outputs found
Isolated Neurogenic Bladder Associated With Human T-Lymphotropic Virus Type 1 Infection in a Renal Transplant Patient From Central Australia: A Case Report
© 2018 Elsevier Inc. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: http://creativecommons.org/licenses/by-nc-nd/4.0/
This author accepted manuscript is made available following 12 month embargo from date of publication (Sept 2018) in accordance with the publisher’s archiving policyHuman T-lymphotropic virus type 1 (HTLV-1) is endemic amongst the Aborigines of the Northern Territory of Australia. HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP) has been associated with this infection. In general population, isolated neurogenic bladder dysfunction in HTLV-1-infected individuals without HAM/TSP has been reported, and the HTLV-1 proviral load has been found to be higher in such patients compared with asymptomatic carriers. In solid organ transplantation, few cases of HAM/TSP have been reported worldwide, but not an isolated neurogenic bladder.
Case
A 50-year-old indigenous women from Alice Springs with end stage renal disease secondary to diabetic nephropathy with no prior history of bladder dysfunction received a cadaveric renal allograft following which she developed recurrent urinary tract infections. The recipient was seropositive for HTLV-1 infection. HTLV-1 status of donor was not checked. Urodynamic studies revealed stress incontinence and detrusor overactivity without urethral intrinsic sphincter deficiency. She had no features of myelopathy. There was elevation of the serum and cerebrospinal fluid HTLV-1 proviral load. The magnetic resonance imaging myelogram was normal. Pyelonephritis was diagnosed based on clinical features, positive cultures, and renal allograft biopsy. Continuous suprapubic catheter drainage helped preventing further episodes of allograft pyelonephritis in spite of chronic colonization of the urinary tract.
Conclusion
Isolated bladder dysfunction is a rare manifestation of HTLV-1 infection and is probably associated with high proviral loads. This may adversely affect renal allograft and patient outcomes
The Inclination of Library Professionals to Modern Tools in the Knowledge Era
The edited volume of the book consists of ten articles covering the innovative practices of libraries in the digital environment. It includes the areas such as library network, e-resources, scholarly publishing, digital libraries, knowledge management, Web 2.0, and blockchain technology etc., that can influence the work-life of the library professionals and the academic community
Biomarker-Directed Targeted Therapy Plus Durvalumab in Advanced Non-Small-Cell Lung Cancer: A Phase 2 Umbrella Trial
For patients with non-small-cell lung cancer (NSCLC) tumors without currently targetable molecular alterations, standard-of-care treatment is immunotherapy with anti-PD-(L)1 checkpoint inhibitors, alone or with platinum-doublet therapy. However, not all patients derive durable benefit and resistance to immune checkpoint blockade is common. Understanding mechanisms of resistance—which can include defects in DNA damage response and repair pathways, alterations or functional mutations in STK11/LKB1, alterations in antigen-presentation pathways, and immunosuppressive cellular subsets within the tumor microenvironment—and developing effective therapies to overcome them, remains an unmet need. Here the phase 2 umbrella HUDSON study evaluated rational combination regimens for advanced NSCLC following failure of anti-PD-(L)1-containing immunotherapy and platinum-doublet therapy. A total of 268 patients received durvalumab (anti-PD-L1 monoclonal antibody)–ceralasertib (ATR kinase inhibitor), durvalumab–olaparib (PARP inhibitor), durvalumab–danvatirsen (STAT3 antisense oligonucleotide) or durvalumab–oleclumab (anti-CD73 monoclonal antibody). Greatest clinical benefit was observed with durvalumab–ceralasertib; objective response rate (primary outcome) was 13.9% (11/79) versus 2.6% (5/189) with other regimens, pooled, median progression-free survival (secondary outcome) was 5.8 (80% confidence interval 4.6–7.4) versus 2.7 (1.8–2.8) months, and median overall survival (secondary outcome) was 17.4 (14.1–20.3) versus 9.4 (7.5–10.6) months. Benefit with durvalumab–ceralasertib was consistent across known immunotherapy-refractory subgroups. In ATM-altered patients hypothesized to harbor vulnerability to ATR inhibition, objective response rate was 26.1% (6/23) and median progression-free survival/median overall survival were 8.4/22.8 months. Durvalumab–ceralasertib safety/tolerability profile was manageable. Biomarker analyses suggested that anti-PD-L1/ATR inhibition induced immune changes that reinvigorated antitumor immunity. Durvalumab–ceralasertib is under further investigation in immunotherapy-refractory NSCLC
A VERITAS/Breakthrough Listen Search for Optical Technosignatures
The Breakthrough Listen Initiative is conducting a program using multiple
telescopes around the world to search for "technosignatures": artificial
transmitters of extraterrestrial origin from beyond our solar system. The
VERITAS Collaboration joined this program in 2018, and provides the capability
to search for one particular technosignature: optical pulses of a few
nanoseconds duration detectable over interstellar distances. We report here on
the analysis and results of dedicated VERITAS observations of Breakthrough
Listen targets conducted in 2019 and 2020 and of archival VERITAS data
collected since 2012. Thirty hours of dedicated observations of 136 targets and
249 archival observations of 140 targets were analyzed and did not reveal any
signals consistent with a technosignature. The results are used to place limits
on the fraction of stars hosting transmitting civilizations. We also discuss
the minimum-pulse sensitivity of our observations and present VERITAS
observations of CALIOP: a space-based pulsed laser onboard the CALIPSO
satellite. The detection of these pulses with VERITAS, using the analysis
techniques developed for our technosignature search, allows a test of our
analysis efficiency and serves as an important proof-of-principle.Comment: 15 pages, 7 figure
Les droits disciplinaires des fonctions publiques : « unification », « harmonisation » ou « distanciation ». A propos de la loi du 26 avril 2016 relative à la déontologie et aux droits et obligations des fonctionnaires
The production of tt‾ , W+bb‾ and W+cc‾ is studied in the forward region of proton–proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98±0.02 fb−1 . The W bosons are reconstructed in the decays W→ℓν , where ℓ denotes muon or electron, while the b and c quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions.The production of , and is studied in the forward region of proton-proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98 0.02 \mbox{fb}^{-1}. The bosons are reconstructed in the decays , where denotes muon or electron, while the and quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions
Cold atoms in space: community workshop summary and proposed road-map
We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies.publishedVersio
Cold atoms in space: community workshop summary and proposed road-map
We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies
Elasmobranch conservation, challenges and management strategy in India: recommendations from a national consultative meeting
Historically, India has been projected as one of the major elasmobranch fishing nations in the world. However, management and conservation efforts are not commensurate with this trend. Along with the Wildlife (Protection) Act, 1972, several generic conservation measures are in place at the regional/local level. But India is still a long way from meeting global conservation commitments. We present here the status of elasmobranch management and conservation in India, with the specific objec-tive of identifying the gaps in the existing set-up. We also present recommendations based on a national consultative workshop held at the Central Marine Fisheries Research Institute, Kochi, in February 2020. We recommend the implementation of a National Plan of Action (NPOA-Sharks) and more in-clusive governance and policymaking for elasmobranch conservation in India
Recommended from our members
Cold atoms in space: community workshop summary and proposed road-map
We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies
- …