1,665 research outputs found
Real-time monitoring of stress evolution during thin film growth by in situ substrate curvature measurement
Strain engineering is the art of inducing controlled lattice distortions in a
material to modify specific physicochemical properties. Strain engineering is
applied for basic fundamental studies of physics and chemistry of solids but
also for device fabrication through the development of materials with new
functionalities. Thin films are one of the most important tools for strain
engineering. Thin films can in fact develop large strain due to the crystalline
constrains at the interface with the substrate and/or as the result of specific
morphological features that can be selected by an appropriate tuning of the
deposition parameters. Within this context, the in situ measurement of the
substrate curvature is a powerful diagnostic tool allowing a real time
monitoring of the stress state of the growing film. This manuscript reviews a
few recent applications of this technique and presents new measurements that
point out the great potentials of the substrate curvature measurement in strain
engineering. Our study also shows how, due to the high sensitivity of the
technique, the correct interpretation of the results can be in certain cases
not trivial and require complementary characterizations and an accurate
knowledge of the physicochemical properties of the materials under
investigation
The Complexity of Subgame Perfect Equilibria in Quantitative Reachability Games
We study multiplayer quantitative reachability games played on a finite
directed graph, where the objective of each player is to reach his target set
of vertices as quickly as possible. Instead of the well-known notion of Nash
equilibrium (NE), we focus on the notion of subgame perfect equilibrium (SPE),
a refinement of NE well-suited in the framework of games played on graphs. It
is known that there always exists an SPE in quantitative reachability games and
that the constrained existence problem is decidable. We here prove that this
problem is PSPACE-complete. To obtain this result, we propose a new algorithm
that iteratively builds a set of constraints characterizing the set of SPE
outcomes in quantitative reachability games. This set of constraints is
obtained by iterating an operator that reinforces the constraints up to
obtaining a fixpoint. With this fixpoint, the set of SPE outcomes can be
represented by a finite graph of size at most exponential. A careful inspection
of the computation allows us to establish PSPACE membership
Fighting COVID-19: What’s in a Name?
While the COVID-19 virus has infected over 3 million people in the United States of America, Asian Americans face unique unfair treatment due to COVID-19. In America, many anti-Asian incidents have been reported, and the FBI warns of increased hate crimes to Asian Americans due to COVID-19. Americans and high-level politicians use inappropriate names, such as “Chinese Virus,” for the COVID-19 virus, which fuels racism and xenophobia. In this Experience piece, we discuss the harm of referring to the COVID-19 virus based on the geographic location where it was first identified
Heat Load-Induced Changes in Lying Behavior and Lying Cubicle Occupancy of Lactating Dairy Cows in a Naturally Ventilated Barn
Dairy cows show a high sensitivity to changes in barn climate, which can result in physiological and ethological responses because of the homeostatic mechanisms to regulate the body temperature under heat load. The objective of this study was to analyze the lying behavior and occupancy of lying cubicles of lactating high-yielding Holstein-Friesian cows throughout the day during three summer months and three winter months. The study was conducted in summer 2016 and in winter 2016/17 in a naturally ventilated barn in Brandenburg, Germany. The determined temperaturehumidity index (THI) of the barn was calculated using the measured ambient temperature and relative humidity at eight locations inside the barn. The THI was used to define the heat load the cows were exposed to. The activity of the cows was measured with accelerometers, and a video recording was made to analyze the occupancy of the three rows of lying cubicles. The results indicated that increasing heat load led to a decrease in lying time; therefore, the daily lying time differed between summer and winter months. In addition, there were different patterns of lying behavior during the course of the day, depending on the season. A sharp decline in lying time could be observed especially in the afternoon hours during the summer. The occupancy of lying cubicles was also influenced by the heat load. The data could be helpful to enable evaluation with algorithms for early detection of heat load
Opportunities for Molecular Imaging in Multiple Sclerosis Management: Linking Probe to Treatment
Imaging has been a critical component of multiple sclerosis (MS) management for nearly 40 years. The visual information derived from structural MRI, that is, signs of blood-brain barrier disruption, inflammation and demyelination, and brain and spinal cord atrophy, are the primary metrics used to evaluate therapeutic efficacy in MS. The development of targeted imaging probes has expanded our ability to evaluate and monitor MS and its therapies at the molecular level. Most molecular imaging probes evaluated for MS applications are small molecules initially developed for PET, nearly half of which are derived from U.S. Food and Drug Administration-approved drugs and those currently undergoing clinical trials. Superparamagnetic and fluorinated particles have been used for tracking circulating immune cells (in situ labeling) and immunosuppressive or remyelinating therapeutic stem cells (ex vivo labeling) clinically using proton (hydrogen 1 [1H]) and preclinically using fluorine 19 MRI. Translocator protein PET and 1H MR spectroscopy have been demonstrated to complement imaging metrics from structural (gadolinium-enhanced) MRI in nine and six trials for MS disease-modifying therapies, respectively. Still, despite multiple demonstrations of the utility of molecular imaging probes to evaluate the target location and to elucidate the mechanisms of disease-modifying therapies for MS applications, their use has been sparse in both preclinical and clinical settings
The Complexity of Subgame Perfect Equilibria in Quantitative Reachability Games
We study multiplayer quantitative reachability games played on a finite directed graph, where the objective of each player is to reach his target set of vertices as quickly as possible. Instead of the well-known notion of Nash equilibrium (NE), we focus on the notion of subgame perfect equilibrium (SPE), a refinement of NE well-suited in the framework of games played on graphs. It is known that there always exists an SPE in quantitative reachability games and that the constrained existence problem is decidable. We here prove that this problem is PSPACE-complete. To obtain this result, we propose a new algorithm that iteratively builds a set of constraints characterizing the set of SPE outcomes in quantitative reachability games. This set of constraints is obtained by iterating an operator that reinforces the constraints up to obtaining a fixpoint. With this fixpoint, the set of SPE outcomes can be represented by a finite graph of size at most exponential. A careful inspection of the computation allows us to establish PSPACE membership
A nudge in a healthier direction: How environmental cues help restrained eaters pursue their weight-control goal
Losing weight is a goal for many people, but it is hard to pursue. However, dieting cues in the environment hold promise for improving individuals' eating behavior. For example, exposure to thin, human-like sculptures by the artist Alberto Giacometti has been found to promote healthy snack choices at a vending machine. Whether health- or weight-related processes drive such effects has not yet been determined. However, a detailed understanding of the content-related drivers of environmental cues' effects provides the first indications regarding a cue's possible use. Therefore, two laboratory studies were conducted. They examined the Giacometti sculptures' effects on unhealthy and healthy food intake (Study 1) and on the completion of weight- and health-related fragmented words (Study 2). Study 1 indicated that the sculptures are weight-related by showing that they reduced food intake independent of food healthiness. Furthermore, the “Giacometti effect” was moderated by restrained eating. Restrained eaters, who are known for their weight-control goal, ate less after having been exposed to the thin sculptures. The results of Study 2 pointed in the same direction. Restrained eaters completed more weight-related words after being exposed to the sculptures. Overall, these studies suggest that the thin sculptures are primarily weight-related cues and particularly helpful for restrained eaters. Environmental weight-control cues such as the Giacometti sculptures could act as a counterforce to our obesogenic environment and help restrained eaters pursue their weight-control goal. In this way, they could nudge food decisions in a healthier direction
- …