42 research outputs found

    Changes in Rift Valley fever neutralizing antibody prevalence among small domestic ruminants following the 1987 outbreak in the Senegal River bassin

    Get PDF
    Deux sĂ©ries d'enquĂȘtes sĂ©rologiques ont Ă©tĂ© menĂ©es dans la rĂ©gion du bassin versant du fleuve SĂ©nĂ©gal oĂč a eu lieu une manifestation Ă©pidĂ©moĂ©pizootique du virus de la fiĂšvre de la vallĂ©e du Rift (FVR) en 1987. Deux Ă©chantillons de sĂ©rums ont Ă©tĂ© prĂ©levĂ©s respectivement en 1988 et en 1989 chez 303 et 331 petits ruminants (chĂšvres et moutons) pris au hasard et ont Ă©tĂ© testĂ©s pour la mise en Ă©vidence d'anticorps neutralisants. Sur les 634 animaux testĂ©s au total et respectivement en 1988 et en 1989, la sĂ©roprĂ©valence est de 24,4 et 19,3%. La prĂ©valence en anticorps neutralisant contre l'antigĂšne RVF est significativement moins Ă©levĂ©e chez les jeunes animaux (7,9%) que chez les adultes (25,3%). Dans la pĂ©riode post-Ă©pizootique de 1988 Ă  1989, une surveillance suivie permet de conclure en faveur d'une absence de circulation active du virus de la FVR chez les ruminants domestiques du Nord-SĂ©nĂ©gal. Le renouvellement rapide de la population non immune de petits ruminants reprĂ©sente un risque potentiel Ă©pizootique et secondairement Ă©pidĂ©mique dans cette zone sahĂ©lienne d'enzootie connu

    Combining hydrology and mosquito population models to identify the drivers of Rift Valley fever emergence in semi-arid regions of West Africa

    Get PDF
    BACKGROUND: Rift Valley fever (RVF) is a vector-borne viral zoonosis of increasing global importance. RVF virus (RVFV) is transmitted either through exposure to infected animals or through bites from different species of infected mosquitoes, mainly of Aedes and Culex genera. These mosquitoes are very sensitive to environmental conditions, which may determine their presence, biology, and abundance. In East Africa, RVF outbreaks are known to be closely associated with heavy rainfall events, unlike in the semi-arid regions of West Africa where the drivers of RVF emergence remain poorly understood. The assumed importance of temporary ponds and rainfall temporal distribution therefore needs to be investigated. METHODOLOGY/PRINCIPAL FINDINGS: A hydrological model is combined with a mosquito population model to predict the abundance of the two main mosquito species (Aedes vexans and Culex poicilipes) involved in RVFV transmission in Senegal. The study area is an agropastoral zone located in the Ferlo Valley, characterized by a dense network of temporary water ponds which constitute mosquito breeding sites. The hydrological model uses daily rainfall as input to simulate variations of pond surface areas. The mosquito population model is mechanistic, considers both aquatic and adult stages and is driven by pond dynamics. Once validated using hydrological and entomological field data, the model was used to simulate the abundance dynamics of the two mosquito species over a 43-year period (1961–2003). We analysed the predicted dynamics of mosquito populations with regards to the years of main outbreaks. The results showed that the main RVF outbreaks occurred during years with simultaneous high abundances of both species. CONCLUSION/SIGNIFICANCE: Our study provides for the first time a mechanistic insight on RVFV transmission in West Africa. It highlights the complementary roles of Aedes vexans and Culex poicilipes mosquitoes in virus transmission, and recommends the identification of rainfall patterns favourable for RVFV amplification

    A Spatial Analysis of Rift Valley Fever Virus Seropositivity in Domestic Ruminants in Tanzania

    Get PDF
    Rift Valley fever (RVF) is an acute arthropod-borne viral zoonotic disease primarily occurring in Africa. Since RVF-like disease was reported in Tanzania in 1930, outbreaks of the disease have been reported mainly from the eastern ecosystem of the Great Rift Valley. This cross-sectional study was carried out to describe the variation in RVF virus (RVFV) seropositivity in domestic ruminants between selected villages in the eastern and western Rift Valley ecosystems in Tanzania, and identify potential risk factors. Three study villages were purposively selected from each of the two Rift Valley ecosystems. Serum samples from randomly selected domestic ruminants (n = 1,435) were tested for the presence of specific immunoglobulin G (IgG) and M (IgM), using RVF enzyme-linked immunosorbent assay methods. Mixed effects logistic regression modelling was used to investigate the association between potential risk factors and RVFV seropositivity. The overall RVFV seroprevalence (n = 1,435) in domestic ruminants was 25.8% and species specific seroprevalence was 29.7%, 27.7% and 22.0% in sheep (n = 148), cattle (n = 756) and goats (n = 531), respectively. The odds of seropositivity were significantly higher in animals sampled from the villages in the eastern than those in the western Rift Valley ecosystem (OR = 1.88, CI: 1.41, 2.51; p<0.001), in animals sampled from villages with soils of good than those with soils of poor water holding capacity (OR = 1.97; 95% CI: 1.58, 3.02; p< 0.001), and in animals which had been introduced than in animals born within the herd (OR = 5.08, CI: 2.74, 9.44; p< 0.001). Compared with animals aged 1-2 years, those aged 3 and 4-5 years had 3.40 (CI: 2.49, 4.64; p< 0.001) and 3.31 (CI: 2.27, 4.82, p< 0.001) times the odds of seropositivity. The findings confirm exposure to RVFV in all the study villages, but with a higher prevalence in the study villages from the eastern Rift Valley ecosystem

    The values and risks of an Intergovernmental Panel for One Health to strengthen pandemic prevention, preparedness, and response

    Get PDF
    The COVID-19 pandemic has shown the need for better global governance of pandemic prevention, preparedness, and response (PPR) and has emphasised the importance of organised knowledge production and uptake. In this Health Policy, we assess the potential values and risks of establishing an Intergovernmental Panel for One Health (IPOH). Similar to the Intergovernmental Panel on Climate Change, an IPOH would facilitate knowledge uptake in policy making via a multisectoral approach, and hence support the addressing of infectious disease emergence and re-emergence at the human-animal-environment interface. The potential benefits to pandemic PPR include a clear, unified, and authoritative voice from the scientific community, support to help donors and institutions to prioritise their investments, evidence-based policies for implementation, and guidance on defragmenting the global health system. Potential risks include a scope not encompassing all pandemic origins, unclear efficacy in fostering knowledge uptake by policy makers, potentially inadequate speed in facilitating response efforts, and coordination challenges among an already dense set of stakeholders. We recommend weighing these factors when designing institutional reforms for a more effective global health system

    Changes in the Molecular Epidemiology of Pediatric Bacterial Meningitis in Senegal After Pneumococcal Conjugate Vaccine Introduction.

    Get PDF
    BACKGROUND: Bacterial meningitis is a major cause of mortality among children under 5 years of age. Senegal is part of World Health Organization-coordinated sentinel site surveillance for pediatric bacterial meningitis surveillance. We conducted this analysis to describe the epidemiology and etiology of bacterial meningitis among children less than 5 years in Senegal from 2010 and to 2016. METHODS: Children who met the inclusion criteria for suspected meningitis at the Centre Hospitalier National d'Enfants Albert Royer, Senegal, from 2010 to 2016 were included. Cerebrospinal fluid specimens were collected from suspected cases examined by routine bacteriology and molecular assays. Serotyping, antimicrobial susceptibility testing, and whole-genome sequencing were performed. RESULTS: A total of 1013 children were admitted with suspected meningitis during the surveillance period. Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus accounted for 66% (76/115), 25% (29/115), and 9% (10/115) of all confirmed cases, respectively. Most of the suspected cases (63%; 639/1013) and laboratory-confirmed (57%; 66/115) cases occurred during the first year of life. Pneumococcal meningitis case fatality rate was 6-fold higher than that of meningococcal meningitis (28% vs 5%). The predominant pneumococcal lineage causing meningitis was sequence type 618 (n = 7), commonly found among serotype 1 isolates. An ST 2174 lineage that included serotypes 19A and 23F was resistant to trimethoprim-sulfamethoxazole. CONCLUSIONS: There has been a decline in pneumococcal meningitis post-pneumococcal conjugate vaccine introduction in Senegal. However, disease caused by pathogens covered by vaccines in widespread use still persists. There is need for continued effective monitoring of vaccine-preventable meningitis

    Drivers for Rift Valley fever emergence in Mayotte: A Bayesian modelling approach

    Get PDF
    Rift Valley fever (RVF) is a major zoonotic and arboviral hemorrhagic fever. The conditions leading to RVF epidemics are still unclear, and the relative role of climatic and anthropogenic factors may vary between ecosystems. Here, we estimate the most likely scenario that led to RVF emergence on the island of Mayotte, following the 2006–2007 African epidemic. We developed the first mathematical model for RVF that accounts for climate, animal imports and livestock susceptibility, which is fitted to a 12-years dataset. RVF emergence was found to be triggered by the import of infectious animals, whilst transmissibility was approximated as a linear or exponential function of vegetation density. Model forecasts indicated a very low probability of virus endemicity in 2017, and therefore of re-emergence in a closed system (i.e. without import of infected animals). However, the very high proportion of naive animals reached in 2016 implies that the island remains vulnerable to the import of infectious animals. We recommend reinforcing surveillance in livestock, should RVF be reported is neighbouring territories. Our model should be tested elsewhere, with ecosystem-specific data

    COVID-19 in sub-Saharan Africa: impacts on vulnerable populations and sustaining home-grown solutions

    Get PDF
    © 2020, The Canadian Public Health Association. This commentary draws on sub-Saharan African health researchers’ accounts of their countries’ responses to control the spread of COVID-19, including social and health impacts, home-grown solutions, and gaps in knowledge. Limited human and material resources for infection control and lack of understanding or appreciation by the government of the realities of vulnerable populations have contributed to failed interventions to curb transmission, and further deepened inequalities. Some governments have adapted or limited lockdowns due to the negative impacts on livelihoods and taken specific measures to minimize the impact on the most vulnerable citizens. However, these measures may not reach the majority of the poor. Yet, African countries’ responses to COVID-19 have also included a range of innovations, including diversification of local businesses to produce personal protective equipment, disinfectants, test kits, etc., which may expand domestic manufacturing capabilities and deepen self-reliance. African and high-income governments, donors, non-governmental organizations, and businesses should work to strengthen existing health system capacity and back African-led business. Social scientific understandings of public perceptions, their interactions with COVID-19 control measures, and studies on promising clinical interventions are needed. However, a decolonizing response to COVID-19 must include explicit and meaningful commitments to sharing the power—the authority and resources—to study and endorse solutions

    Safety, reactogenicity, and immunogenicity of a chimpanzee adenovirus vectored Ebola vaccine in adults in Africa: a randomised, observer-blind, placebo-controlled, phase 2 trial.

    Get PDF
    BACKGROUND: The 2014 Zaire Ebola virus disease epidemic accelerated vaccine development for the virus. We aimed to assess the safety, reactogenicity, and immunogenicity of one dose of monovalent, recombinant, chimpanzee adenovirus type-3 vectored Zaire Ebola glycoprotein vaccine (ChAd3-EBO-Z) in adults. METHODS: This phase 2, randomised, observer-blind, controlled trial was done in study centres in Cameroon, Mali, Nigeria, and Senegal. Healthy adults (≄18 years) were randomly assigned with a web-based system (1:1; minimisation procedure accounting for age, gender, centre) to receive ChAd3-EBO-Z (day 0), or saline placebo (day 0) and ChAd3-EBO-Z (month 6). The study was observer-blind until planned interim day 30 analysis, single-blind until month 6, and open-label after month 6 vaccination. Primary outcomes assessed in the total vaccinated cohort, which comprised all participants with at least one study dose administration documented, were serious adverse events (up to study end, month 12); and for a subcohort were solicited local or general adverse events (7 days post-vaccination), unsolicited adverse events (30 days post-vaccination), haematological or biochemical abnormalities, and clinical symptoms of thrombocytopenia (day 0-6). Secondary endpoints (subcohort; per-protocol cohort) evaluated anti-glycoprotein Ebola virus antibody titres (ELISA) pre-vaccination and 30 days post-vaccination. This study is registered with ClinicalTrials.gov, NCT02485301. FINDINGS: Between July 22, 2015, and Dec 10, 2015, 3030 adults were randomly assigned; 3013 were included in the total vaccinated cohort (1509 [50·1%] in the ChAd3-EBO-Z group and 1504 [49·9%] in the placebo/ChAd3-EBO-Z group), 17 were excluded because no vaccine was administered. The most common solicited injection site symptom was pain (356 [48%] of 748 in the ChAd3-EBO-Z group vs 57 [8%] of 751 in the placebo/ChAd3-EBO-Z group); the most common solicited general adverse event was headache (345 [46%] in the ChAd3-EBO-Z group vs 136 [18%] in the placebo/ChAd3-EBO-Z group). Unsolicited adverse events were reported by 123 (16%) of 749 in the ChAd3-EBO-Z group and 119 (16%) of 751 in the placebo/ChAd3-EBO-Z group. Serious adverse events were reported for 11 (1%) of 1509 adults in the ChAd3-EBO-Z group, and 18 (1%) of 1504 in the placebo/ChAd3-EBO-Z group; none were considered vaccination-related. No clinically meaningful thrombocytopenia was reported. At day 30, anti-glycoprotein Ebola virus antibody geometric mean concentration was 900 (95% CI 824-983) in the ChAd3-EBO-Z group. There were no treatment-related deaths. INTERPRETATION: ChAd3-EBO-Z was immunogenic and well tolerated in adults. Our findings provide a strong basis for future development steps, which should concentrate on multivalent approaches (including Sudan and Marburg strains). Additionally, prime-boost approaches should be a focus with a ChAd3-based vaccine for priming and boosted by a modified vaccinia Ankara-based vaccine. FUNDING: EU's Horizon 2020 research and innovation programme and GlaxoSmithKline Biologicals SA
    corecore