14 research outputs found
Vulnerability assessment of reinforced concrete columns subjected to vehicular impacts
Columns are one of the key load bearing elements that are highly susceptible to vehicle impacts. The resulting severe damages to columns may leads to failures of the supporting structure that are catastrophic in nature. However, the columns in existing structures are seldom designed for impact due to inadequacies of design guidelines. The impact behaviour of columns designed for gravity loads and actions other than impact is, therefore, of an interest.
A comprehensive investigation is conducted on reinforced concrete column with a particular focus on investigating the vulnerability of the exposed columns and to implement mitigation techniques under low to medium velocity car and truck impacts. The investigation is based on non-linear explicit computer simulations of impacted columns followed by a comprehensive validation process. The impact is simulated using force pulses generated from full scale vehicle impact tests. A material model capable of simulating triaxial loading conditions is used in the analyses. Circular columns adequate in capacity for five to twenty story buildings, designed according to Australian standards are considered in the investigation. The crucial parameters associated with the routine column designs and the different load combinations applied at the serviceability stage on the typical columns are considered in detail.
Axially loaded columns are examined at the initial stage and the investigation is extended to analyse the impact behaviour under single axis bending and biaxial bending. The impact capacity reduction under varying axial loads is also investigated. Effects of the various load combinations are quantified and residual capacity of the impacted columns based on the status of the damage and mitigation techniques are also presented. In addition, the contribution of the individual parameter to the failure load is scrutinized and analytical equations are developed to identify the critical impulses in terms of the geometrical and material properties of the impacted column. In particular, an innovative technique was developed and introduced to improve the accuracy of the equations where the other techniques are failed due to the shape of the error distribution.
Above all, the equations can be used to quantify the critical impulse for three consecutive points (load combinations) located on the interaction diagram for one particular column. Consequently, linear interpolation can be used to quantify the critical impulse for the loading points that are located in-between on the interaction diagram. Having provided a known force and impulse pair for an average impact duration, this method can be extended to assess the vulnerability of columns for a general vehicle population based on an analytical method that can be used to quantify the critical peak forces under different impact durations. Therefore the contribution of this research is not only limited to produce simplified yet rational design guidelines and equations, but also provides a comprehensive solution to quantify the impact capacity while delivering new insight to the scientific community for dealing with impacts
Numerical simulation of axially loaded concrete columns under transverse impact and vulnerability assessment
With a view to assessing the vulnerability of columns to low elevation vehicular impacts, a non-linear explicit numerical model has been developed and validated using existing experimental results. The numerical model accounts for the effects of strain rate and confinement of the reinforced concrete, which are fundamental to the successful prediction of the impact response. The sensitivity of the material model parameters used for the validation is also scrutinised and numerical tests are performed to examine their suitability to simulate the shear failure conditions. Conflicting views on the strain gradient effects are discussed and the validation process is extended to investigate the ability of the equations developed under concentric loading conditions to simulate flexural failure events. Experimental data on impact force–time histories, mid span and residual deflections and support reactions have been verified against corresponding numerical results. A universal technique which can be applied to determine the vulnerability of the impacted columns against collisions with new generation vehicles under the most common impact modes is proposed. Additionally, the observed failure characteristics of the impacted columns are explained using extended outcomes. Based on the overall results, an analytical method is suggested to quantify the vulnerability of the columns
Vulnerability of axially loaded columns subjected to transverse impact loads
Increased industrialisation has brought to the forefront the susceptibility of concrete columns in both buildings and bridges to vehicle impacts. Accurate vulnerability assessments are crucial in the design process due to possible catastrophic nature of the failures that can cause. This paper reports on research undertaken to investigate the impact capacity of the columns of low to medium raised building designed according to Australian Standards. Numerical simulation techniques were used in the process and validation was done by using experimental results published in the literature. The investigation thus far has confirmed that vulnerability of typical columns in five story buildings located in urban areas to medium velocity car impacts and hence these columns need to be re-designed (if possible) or retrofitted. In addition, accuracy of the simplified method presented in EN 1991 to quantify the impact damage was scrutinised. A simplified concept to assess the damage due to all collisions modes was introduced. The research information will be extended to generate a common data base to assess the vulnerability of columns in urban areas against new generation of vehicles
Classification of inventory data suit for managing Australian railway bridges
With a focus to optimising the life cycle performance of Australian Railway bridges, new bridge classification and environmental classification systems are proposed. The new bridge classification system is mainly to facilitate the implementation of novel Bridge Management System (BMS) which optimise the life cycle cost both at project level and network level while environment classification is mainly to improve accuracy of Remaining Service Potential (RSP) module of the proposed BMS. In fact, limited capacity of the existing BMS to trigger the maintenance intervention point is an indirect result of inadequacies of the existing bridge and environmental classification systems. The proposed bridge classification system permits to identify the intervention points based on percentage deterioration of individual elements and maintenance cost, while allowing performance based rating technique to implement for maintenance optimisation and prioritisation. Simultaneously, the proposed environment classification system will enhance the accuracy of prediction of deterioration of steel components
Infrastructure sustainability: vulnerability of axially loaded columns subjected to transverse impact loads
Increased industrialisation has brought to the forefront the susceptibility of concrete columns in both buildings and bridges to vehicle impacts. Accurate vulnerability assessments are crucial in the design process due to possible catastrophic nature of the failures that can cause. This chapter reports on research undertaken to investigate the impact capacity of the columns of low to medium raised building designed according to the Australian standards. Numerical simulation techniques were used in the process and validation was done by using experimental results published in the literature. The investigation thus far has confirmed that vulnerability of typical columns in five story buildings located in urban areas to medium velocity car impacts and hence these columns need to be re-designed or retrofitted. In addition, accuracy of the simplified method presented in EN 1991-1-7 to quantify the impact damage was scrutinised. A simplified concept to assess the damage due to all collisions modes was introduced. The research information will be extended to generate a common data base to assess the vulnerability of columns in urban areas against new generation of vehicles