91 research outputs found
Field-induced domain wall propagation: beyond the one-dimensional model
We have investigated numerically the field-driven propagation of
perpendicularly magnetized ferromagnetic layers. It was then compared to the
historical one-dimensional domain wall (DW) propagation model widely used in
spintronics studies of magnetic nanostructures. In the particular regime of
layer thickness (h) of the order of the exchange length, anomalous velocity
peaks appear in the precessional regime, their shape and position shifting with
h. This has also been observed experimentally. Analyses of the simulations show
a distinct correlation between the curvature of the DW and the twist of the
magnetization vector within it, and the velocity peak. Associating a
phenomenological description of this twist with a four-coordinate DW
propagation model, we reproduce very well these kinks and show that they result
from the torque exerted by the stray field created by the domains on the
twisted magnetization. The position of the peaks is well predicted from the
DW's first flexural mode frequency, and depends strongly on the layer
thickness. Comparison of the proposed model to DW propagation data obtained on
dilute semiconductor ferromagnets GaMnAs and GaMnAsP sheds light on the origin
of the measured peaks
Determination of the micromagnetic parameters in (Ga,Mn)As using domain theory
The magnetic domain structure and magnetic properties of a ferromagnetic
(Ga,Mn)As epilayer with perpendicular magnetic easy-axis are investigated. We
show that, despite strong hysteresis, domain theory at thermodynamical
equilibrium can be used to determine the micromagnetic parameters. Combining
magneto-optical Kerr microscopy, magnetometry and ferromagnetic resonance
measurements, we obtain the characteristic parameter for magnetic domains
, the domain wall width and specific energy, and the spin stiffness
constant as a function of temperature. The nucleation barrier for magnetization
reversal and the Walker breakdown velocity for field-driven domain wall
propagation are also estimated
Ion-beam mixing induced by atomic and cluster bombardment in the electronic stopping-power regime
Single crystals of magnesium oxide containing nanoprecipitates of sodium were bombarded with swift ions (∼GeV-Pb, U) or cluster beams (∼20 MeV-C60) to study the phase change induced by electronic processes at high stopping power (≳10 keV/nm). The sodium precipitates and the defect creation were characterized by optical absorption and transmission electron microscopy. The ion or cluster bombardment leads to an evolution of the Na precipitate concentration but the size distribution remains unchanged. The decrease in Na metallic concentration is attributed to mixing effects at the interfaces between Na clusters and MgO. In addition, optical-absorption measurements show a broadening of the absorption band associated with electron plasma oscillations in Na clusters. This effect is due to a decrease of the electron mean free path, which could be induced by defect creation in the metal. All these results show an influence of high electronic stopping power in materials known to be very resistant to irradiation with weak ionizing projectiles. The dependence of these effects on electronic stopping power and on various solid-state parameters is discussed
Coupling and induced depinning of magnetic domain walls in adjacent spin valve nanotracks
The magnetostatic interaction between magnetic domain walls (DWs) in adjacent
nanotracks has been shown to produce strong inter-DW coupling and mutual
pinning. In this paper, we have used electrical measurements of adjacent
spin-valve nanotracks to follow the positions of interacting DWs. We show that
the magnetostatic interaction between DWs causes not only mutual pinning, as
observed till now, but that a travelling DW can also induce the depinning of
DWs in near-by tracks. These effects may have great implications for some
proposed high density magnetic devices (e.g. racetrack memory, DW logic
circuits, or DW-based MRAM).Comment: The following article has been accepted by the Journal of Applied
Physic
Femtosecond nonlinear ultrasonics in gold probed with ultrashort surface plasmons
Fundamental interactions induced by lattice vibrations on ultrafast time
scales become increasingly important for modern nanoscience and technology.
Experimental access to the physical properties of acoustic phonons in the THz
frequency range and over the entire Brillouin zone is crucial for understanding
electric and thermal transport in solids and their compounds. Here, we report
on the generation and nonlinear propagation of giant (1 percent) acoustic
strain pulses in hybrid gold/cobalt bilayer structures probed with ultrafast
surface plasmon interferometry. This new technique allows for unambiguous
characterization of arbitrary ultrafast acoustic transients. The giant acoustic
pulses experience substantial nonlinear reshaping already after a propagation
distance of 100 nm in a crystalline gold layer. Excellent agreement with the
Korteveg-de Vries model points to future quantitative nonlinear femtosecond
THz-ultrasonics at the nano-scale in metals at room temperature
Magnetic domain wall pinning by a curved conduit
The pinning of a magnetic domain wall in a curved Permalloy (NiFe) nanostrip is experimentally studied. We examine the dependence of the pinning on both the radius of curvature of the bend and the chirality of the transverse domain wall. We find that bends act as potential wells or potential barriers depending on the chirality of the domain wall; the pinning field in both cases increases with decreasing radius of curvature. Micromagnetic simulations are consistent with the experimental results and show that both exchange and demagnetizing energies play an important role
Strong reduction of the coercivity by a surface acoustic wave in an out-of-plane magnetized epilayer
The 2019 surface acoustic waves roadmap
Today, surface acoustic waves (SAWs) and bulk acoustic waves are already two of the very few phononic technologies of industrial relevance and can been found in a myriad of devices employing these nanoscale earthquakes on a chip. Acoustic radio frequency filters, for instance, are integral parts of wireless devices. SAWs in particular find applications in life sciences and microfluidics for sensing and mixing of tiny amounts of liquids. In addition to this continuously growing number of applications, SAWs are ideally suited to probe and control elementary excitations in condensed matter at the limit of single quantum excitations. Even collective excitations, classical or quantum are nowadays coherently interfaced by SAWs. This wide, highly diverse, interdisciplinary and continuously expanding spectrum literally unites advanced sensing and manipulation applications. Remarkably, SAW technology is inherently multiscale and spans from single atomic or nanoscopic units up even to the millimeter scale. The aim of this Roadmap is to present a snapshot of the present state of surface acoustic wave science and technology in 2019 and provide an opinion on the challenges and opportunities that the future holds from a group of renown experts, covering the interdisciplinary key areas, ranging from fundamental quantum effects to practical applications of acoustic devices in life science
- …