63 research outputs found
Microdialysis Monitoring in Clinical Traumatic Brain Injury and Its Role in Neuroprotective Drug Development
Injuries to the central nervous system continue to be vast contributors to morbidity and mortality; specifically, traumatic brain injury (TBI) is the most common cause of death during the first four decades of life. Several modalities are used to monitor patients suffering from TBI in order to prevent detrimental secondary injuries. The microdialysis (MD) technique, introduced during the 1990s, presents the treating physician with a robust monitoring tool for brain chemistry in addition to conventional intracranial pressure monitoring. Nevertheless, some limitations remain, such as limited spatial resolution. Moreover, while there have been several attempts to develop new potential pharmacological therapies in TBI, there are currently no available drugs which have shown clinical efficacy that targets the underlying pathophysiology, despite various trials investigating a plethora of pharmaceuticals. Specifically in the brain, MD is able to demonstrate penetration of the drug through the blood-brain barrier into the brain extracellular space at potential site of action. In addition, the downstream effects of drug action can be monitored directly. In the future, clinical MD, together with other monitoring modalities, can identify specific pathological substrates which require tailored treatment strategies for patients suffering from TBI.The author(s) gratefully acknowledge receipt of the following financial support. Medical Research Council (Grant nos. G0600986 ID79068 and G1002277 ID98489) and National Institute for Health Research Biomedical Research Centre, Cambridge (Neuroscience Theme; Brain Injury and Repair Theme). Authorsâ support: EPTâthe Swedish Society of Medicine (Grant no. SLS-587221) and the Swedish Brain Foundation; KLHCâthe National Institute for Health Research Biomedical Research Centre, Cambridge (Neuroscience Theme; Brain Injury and Repair Theme); PJHâthe National Institute for Health Research Professorship, the Academy of Medical Sciences/Health Foundation Senior Surgical Scientist Fellowship and the National Institute for Health Research Biomedical Research Centre, Cambridge; AHâthe Medical Research Council/Royal College of Surgeons of England Clinical Research Training Fellowship (Grant no. G0802251)
Cerebrospinal fluid and microdialysis cytokines in aneurysmal subarachnoid hemorrhage: A scoping systematic review
Objective: To perform two scoping systematic reviews of the literature on cytokine measurement in cerebral microdialysis (CMD) and cerebrospinal fluid (CSF) in aneurysmal subarachnoid hemorrhage (SAH) patients, aiming to summarize the evidence relating cytokine levels to pathophysiology, disease progression, and outcome. Methods: Two separate systematic reviews were conducted: one for CMD cytokines and the second for CSF cytokines. Data sources: Articles from MEDLINE, BIOSIS, EMBASE, Global Health, Scopus, Cochrane Library (inception to October 2016), reference lists of relevant articles, and gray literature were searched. Study selection: Two reviewers independently identified all manuscripts utilizing predefined inclusion/exclusion criteria. A two-tier filter of references was conducted. Data extraction: Patient demographic and study data were extracted to tables. Results: There were 9 studies identified describing the analysis of cytokines via CMD in 246 aneurysmal SAH patients. Similarly, 20 studies were identified describing the analysis of CSF cytokines in 630 patients. The two scoping systematic reviews demonstrated the following: (1) limited literature available on CMD cytokine measurement in aneurysmal SAH with some preliminary data supporting feasibility of measurement and potential association between interleukin (IL)-6 and patient outcome. (2) Various CSF measured cytokines may be associated with patient outcome at 3-6 months, including IL-1ra, IL-6, IL-8, and tumor necrosis factor-alpha. (3) There is a small literature body supporting an association between acute/subacute CSF transforming growth factor levels and the development of chronic hydrocephalus at 2-3 months. Conclusion: The evaluation of CMD and CSF cytokines is an emerging area of the literature in aneurysmal SAH. Further large prospective multicenter studies on cytokines in CMD and CSF need to be conducted.This work was made possible through salary support through the Cambridge Commonwealth Trust Scholarship, the Royal College of Surgeons of CanadaâHarry S. Morton Travelling Fellowship in Surgery, the University of Manitoba Clinician Investigator Program, R. Samuel McLaughlin Research and Education Award, the Manitoba Medical Service Foundation, and the University of Manitoba Faculty of Medicine Deanâs Fellowship Fund. ET has received funding support from Swedish Society of Medicine (grant no. SLS-587221). AH receives support from the Medical Research Council (MRC) (Studentship for Neuro-inflammation following Human Traumatic Brain Injury - G0802251), Cambridge Biomedical Research Centre, and Royal College of Surgeons of England. These studies were supported by National Institute for Healthcare Research (NIHR, UK) through the Acute Brain Injury and Repair theme of the Cambridge NIHR Biomedical Research Centre, an NIHR Senior Investigator Award to DKM, and an NIHR Research Professorship to PH. Authors were also supported by a European Union Framework Program 7 grant (CENTER-TBI; grant agreement no. 602150). PH receives support from the National Institute of Health Research, Cambridge Biomedical Research Centre
Cerebrospinal Fluid and Microdialysis Cytokines in Severe Traumatic Brain Injury: A Scoping Systematic Review.
OBJECTIVE: To perform two scoping systematic reviews of the literature on cytokine measurement in: 1. cerebral microdialysis (CMD) and 2. cerebrospinal fluid (CSF) in severe traumatic brain injury (TBI) patients. METHODS: Two separate systematic reviews were conducted: one for CMD cytokines and the second for CSF cytokines. Both were conducted in severe TBI (sTBI) patients only. DATA SOURCES: Articles from MEDLINE, BIOSIS, EMBASE, Global Health, Scopus, Cochrane Library (inception to October 2016), reference lists of relevant articles, and gray literature were searched. STUDY SELECTION: Two reviewers independently identified all manuscripts utilizing predefined inclusion/exclusion criteria. A two-tier filter of references was conducted. DATA EXTRACTION: Patient demographic and study data were extracted to tables. RESULTS: There were 19 studies identified describing the analysis of cytokines via CMD in 267 sTBI patients. Similarly, there were 32 studies identified describing the analysis of CSF cytokines in 1,363 sTBI patients. The two systematic reviews demonstrated: 1. limited literature available on CMD cytokine measurement in sTBI, with some preliminary data supporting feasibility of measurement and associations between cytokines and patient outcome. 2. Various CSF measured cytokines may be associated with patient outcome at 6-12âmonths, including interleukin (IL)-1b, IL-1ra, IL-6, IL-8, IL-10, and tumor necrosis factor 3. There is little to no literature in support of an association between CSF cytokines and neurophysiologic or tissue outcomes. CONCLUSION: The evaluation of CMD and CSF cytokines is an emerging area of the literature in sTBI. Further, large prospective multicenter studies on cytokines in CMD and CSF need to be conducted.This work was made possible through salary support through: the Cambridge Commonwealth Trust Scholarship, the Royal College of Surgeons of CanadaâHarry S. Morton Traveling Fellowship in Surgery, the University of Manitoba Clinician Investigator Program, R. Samuel McLaughlin Research and Education Award, the Manitoba Medical Service Foundation, and the University of Manitoba Faculty of Medicine Deanâs Fellowship Fund. These studies were supported by National Institute for Healthcare Research (NIHR, UK) through the Acute Brain Injury and Repair theme of the Cambridge NIHR Biomedical Research Center, an NIHR Senior Investigator Award to DM, and an NIHR Research Professorship to PH. Authors were also supported by a European Union Framework Program 7 grant (CENTER-TBI; Grant Agreement No. 602150). ET has received funding support from Swedish Society of Medicine (Grant no. SLS-587221). AH is supported by an MRC Studentship for Neuro-inflammation following Human Traumatic Brain injury (G0802251)
Dynamics of cerebrospinal fluid levels of matrix metalloproteinases in human traumatic brain injury
Matrix metalloproteinases (MMPs) are extracellular enzymes involved in the degradation of extracellular matrix (ECM) proteins. Increased expression of MMPs have been described in traumatic brain injury (TBI) and may contribute to additional tissue injury and bloodâbrain barrier damage. The objectives of this study were to determine longitudinal changes in cerebrospinal fluid (CSF) concentrations of MMPs after acute TBI and in relation to clinical outcomes, with patients with idiopathic normal pressure hydrocephalus (iNPH) serving as a contrast group. The study included 33 TBI patients with ventricular CSF serially sampled, and 38 iNPH patients in the contrast group. Magnetic bead-based immunoassays were utilized to measure the concentrations of eight MMPs in ventricular human CSF. CSF concentrations of MMP-1, MMP-3 and MMP-10 were increased in TBI patients (at baseline) compared with the iNPH group (pâ<â0.001), while MMP-2, MMP-9 and MMP-12 did not differ between the groups. MMP-1, MMP-3 and MMP-10 concentrations decreased with time after trauma (pâ=â0.001â0.04). Increased concentrations of MMP-2 and MMP-10 in CSF at baseline were associated with an unfavourable TBI outcome (pâ=â0.002â0.02). Observed variable pattern of changes in MMP concentrations indicates that specific MMPs serve different roles in the pathophysiology following TBI, and are in turn associated with clinical outcomes
Delineating Astrocytic Cytokine Responses in a Human Stem Cell Model of Neural Trauma
Neuroinflammation has been shown to mediate the pathophysiological response following traumatic brain injury (TBI). Accumulating evidence implicates astrocytes as key immune cells within the central nervous system (CNS), displaying both pro- and anti-inflammatory properties. The aim of this study was to investigate how in vitro human astrocyte cultures respond to cytokines across a concentration range that approximates the aftermath of human TBI. To this end, enriched cultures of human induced pluripotent stem cell (iPSC)-derived astrocytes were exposed to interleukin-1β (IL-1β) (1â10,000âpg/mL), IL-4 (1â10,000âpg/mL), IL-6 (100â1,000,000âpg/mL), IL-10 (1â10,000âpg/mL) and tumor necrosis factor (TNF)-Îą (1â10,000âpg/mL). After 1, 24, 48 and 72âh, cultures were fixed and immunolabeled, and the secretome/supernatant was analyzed at 24, 48, and 72âh using a human cytokine/chemokine 39-plex Luminex assay. Data were compared to previous in vitro studies of neuronal cultures and clinical TBI studies. The secretome revealed concentration-, time- and/or both concentration- and time-dependent production of downstream cytokines (29, 21, and 17 cytokines, respectively, p<0.05). IL-1β exposure generated the most profound downstream response (27 cytokines), IL-6 and TNF had intermediate responses (13 and 11 cytokines, respectively), whereas IL-4 and IL-10 only led to weak responses over time or in escalating concentration (8 and 8 cytokines, respectively). Notably, expression of IL-1β, IL-6, and TNF cytokine receptor mRNA was higher in astrocyte cultures than in neuronal cultures. Several secreted cytokines had temporal trajectories, which corresponded to those seen in the aftermath of human TBI. In summary, iPSC-derived astrocyte cultures exposed to cytokine concentrations reflecting those in TBI generated an increased downstream cytokine production, particularly IL-1β. Although more work is needed to better understand how different cells in the CNS respond to the neuroinflammatory milieu after TBI, our data shows that iPSC-derived astrocytes represent a tractable model to study cytokine stimulation in a cell type-specific manner
Astrocytes display cell autonomous and diverse early reactive states in familial amyotrophic lateral sclerosis
Amyotrophic lateral sclerosis is a rapidly progressive and fatal disease. Although astrocytes are increasingly recognized contributors to the underlying pathogenesis, the cellular autonomy and uniformity of astrocyte reactive transformation in different genetic forms of amyotrophic lateral sclerosis remain unresolved. Here we systematically examine these issues by using highly enriched and human induced pluripotent stem cell-derived astrocytes from patients with VCP and SOD1 mutations. We show that VCP mutant astrocytes undergo cell-autonomous reactive transformation characterized by increased expression of complement component 3 (C3) in addition to several characteristic gene expression changes. We then demonstrate that isochronic SOD1 mutant astrocytes also undergo a cell-autonomous reactive transformation, but that this is molecularly distinct from VCP mutant astrocytes. This is shown through transcriptome-wide analyses, identifying divergent gene expression profiles and activation of different key transcription factors in SOD1 and VCP mutant human induced pluripotent stem cell-derived astrocytes. Finally, we show functional differences in the basal cytokine secretome between VCP and SOD1 mutant human induced pluripotent stem cell-derived astrocytes. Our data therefore reveal that reactive transformation can occur cell autonomously in human amyotrophic lateral sclerosis astrocytes and with a striking degree of early molecular and functional heterogeneity when comparing different disease-causing mutations. These insights may be important when considering astrocyte reactivity as a putative therapeutic target in familial amyotrophic lateral sclerosis
Monitoring the Neuroinflammatory Response Following Acute Brain injury
Traumatic brain injury (TBI) and subarachnoid hemorrhage (SAH) are major contributors to morbidity and mortality. Following the initial insult, patients may deteriorate due to secondary brain damage. The underlying molecular and cellular cascades incorporate components of the innate immune system. There are different approaches to assess and monitor cerebral inflammation in the neuro intensive care unit. The aim of this narrative review is to describe techniques to monitor inflammatory activity in patients with TBI and SAH in the acute setting. The analysis of pro- and anti-inflammatory cytokines in compartments of the central nervous system (CNS), including the cerebrospinal fluid and the extracellular fluid, represent the most common approaches to monitor surrogate markers of cerebral inflammatory activity. Each of these compartments has a distinct biology that reflects local processes and the cross-talk between systemic and CNS inflammation. Cytokines have been correlated to outcomes as well as ongoing, secondary injury progression. Alongside the dynamic, focal assay of humoral mediators, imaging, through positron emission tomography, can provide a global in vivo measurement of inflammatory cell activity, which reveals long-lasting processes following the initial injury. Compared to the innate immune system activated acutely after brain injury, the adaptive immune system is likely to play a greater role in the chronic phase as evidenced by T-cell-mediated autoreactivity toward brain-specific proteins. The most difficult aspect of assessing neuroinflammation is to determine whether the processes monitored are harmful or beneficial to the brain as accumulating data indicate a dual role for these inflammatory cascades following injury. In summary, the inflammatory component of the complex injury cascade following brain injury may be monitored using different modalities. Using a multimodal monitoring approach can potentially aid in the development of therapeutics targeting different aspects of the inflammatory cascade and improve the outcome following TBI and SAH
Serial sampling of serum protein biomarkers for monitoring human traumatic brain injury dynamics: A systematic review
Background: The proteins S100B, neuron-specific enolase (NSE), glial fibrillary acidic protein (GFAP), ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), and neurofilament light (NF-L) have been serially sampled in serum of patients suffering from traumatic brain injury (TBI) in order to assess injury severity and tissue fate. We review the current literature of serum level dynamics of these proteins following TBI and used the term âeffective half-lifeâ (tâââ) in order to describe the âfallâ rate in serum.
Materials and methods: Through searches on EMBASE, Medline, and Scopus, we looked for articles where these proteins had been serially sampled in serum in human TBI. We excluded animal studies, studies with only one presented sample and studies without neuroradiological examinations.
Results: Following screening (10,389 papers), n = 122 papers were included. The proteins S100B (n = 66) and NSE (n = 27) were the two most frequent biomarkers that were serially sampled. For S100B in severe TBI, a majority of studies indicate a tâââ of about 24 h, even if very early sampling in these patients reveals rapid decreases (1â2 h) though possibly of non-cerebral origin. In contrast, the tâââ for NSE is comparably longer, ranging from 48 to 72 h in severe TBI cases. The protein GFAP (n = 18) appears to have tâââ of about 24â48 h in severe TBI. The protein UCH-L1 (n = 9) presents a âââ around 7 h in mild TBI and about 10 h in severe. Frequent sampling of these proteins revealed different trajectories with persisting high serum levels, or secondary peaks, in patients with unfavorable outcome or in patients developing secondary detrimental events. Finally, NF-L (n = 2) only increased in the few studies available, suggesting a serum availability of >10 days. To date, automated assays are available for S100B and NSE making them faster and more practical to use.
Conclusion: Serial sampling of brain-specific proteins in serum reveals different temporal trajectories that should be acknowledged. Proteins with shorter serum availability, like S100B, may be superior to proteins such as NF-L in detection of secondary harmful events when monitoring patients with TBI.ET: Swedish Society of Medicine (Grant no. SLS-587221). FZ: Cambridge Commonwealth Trust Scholarship, the Royal College of Surgeons of CanadaâHarry S. Morton Travelling Fellowship in Surgery, the University of Manitoba Clinician Investigator Program, R. Samuel McLaughlin Research and Education Award, the Manitoba Medical Service Foundation, and the University of Manitoba Faculty of Medicine Deanâs Fellowship Fund. AB: Hungarian Brain Research ProgramâGrant No. KTIA_13_NAP-A- II/8. DM: National Institute for Healthcare Research (NIHR, UK) through the Acute Brain Injury and Repair theme of the Cambridge NIHR Biomedical Research Centre, an NIHR Senior Investigator Award to DM. The authors were also supported by a European Union Framework Program 7 grant (CENTER-TBI; Grant Agreement No. 602150). AH: Medical Research Council, Cambridge Biomedical Research Centre, Royal College of Surgeons of England. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Statistical analysis plan for the Dex-CSDH trial: a randomised, double-blind, placebo-controlled trial of a 2-week course of dexamethasone for adult patients with a symptomatic chronic subdural haematoma
Abstract Background The incidence of chronic subdural haematoma (CSDH) is increasing. Although surgery remains the mainstay of management for symptomatic patients, uncertainty remains regarding the role of steroids. Hence, the Dex-CSDH trial was launched in the UK in 2015 aiming to determine whether, compared to placebo, dexamethasone can improve the 6-month functional outcome of patients with symptomatic CSDH by reducing the rate of surgical intervention and recurrence rate. Methods and design Dex-CSDH is a multi-centre, pragmatic, parallel group, double-blind, randomised trial assessing the clinical utility of a 2-week course of dexamethasone following a CSDH. Seven hundred fifty patients were randomised to either dexamethasone or placebo. The primary outcome is the modified Rankin Scale at 6 months which is dichotomised to favourable (a score of 0â3) versus unfavourable (a score of 4â6). Conclusions This paper and the accompanying additional material describe the statistical analysis plan for the trial. Trial registration ISRCTN, ISRCTN80782810. Registered on 7 November 2014. http://www.isrctn.com/ISRCTN80782810. EudraCT, 2014-004948-35. Registered on 20 March 2015. </jats:sec
- âŚ