459 research outputs found
Controlled propulsion and separation of helical particles at the nanoscale
Controlling the motion of nano and microscale objects in a fluid environment
is a key factor in designing optimized tiny machines that perform mechanical
tasks such as transport of drugs or genetic material in cells, fluid mixing to
accelerate chemical reactions, and cargo transport in microfluidic chips.
Directed motion is made possible by the coupled translational and rotational
motion of asymmetric particles. A current challenge in achieving directed and
controlled motion at the nanoscale lies in overcoming random Brownian motion
due to thermal fluctuations in the fluid. We use a hybrid lattice-Boltzmann
Molecular Dynamics method with full hydrodynamic interactions and thermal
fluctuations to demonstrate that controlled propulsion of individual
nanohelices in an aqueous environment is possible. We optimize the propulsion
velocity and the efficiency of externally driven nanohelices. We quantify the
importance of the thermal effects on the directed motion by calculating the
P\'eclet number for various shapes, number of turns and pitch lengths of the
helices. Consistent with the experimental microscale separation of chiral
objects, our results indicate that in the presence of thermal fluctuations at
P\'eclet numbers , chiral particles follow the direction of propagation
according to its handedness and the direction of the applied torque making
separation of chiral particles possible at the nanoscale. Our results provide
criteria for the design and control of helical machines at the nanoscale
Sex-specific ultrasonic vocalization patterns and alcohol consumption in high alcohol-drinking (HAD-1) rats
Ultrasonic vocalizations (USVs) have been established as an animal model of emotional status and are often utilized in drug abuse studies as motivational and emotional indices. Further USV functionality has been demonstrated in our recent work showing accurate identification of selectively-bred high versus low alcohol-consuming male rats ascertained exclusively from 22 to 28 kHz and 50–55 kHz FM USV acoustic parameters. With the hypothesis that alcohol-sensitive sex differences could be revealed through USV acoustic parameters, the present study examined USVs and alcohol consumption in male and female selectively bred high-alcohol drinking (HAD-1) rats. For the current study, we examined USV data collected during a 12-week experiment in male and female HAD-1 rats. Experimental phases included Baseline (2 weeks), 4-h EtOH Access (4 weeks), 24-h EtOH Access (4 weeks) and Abstinence (2 weeks). Findings showed that both male and female HAD-1 rats spontaneously emitted a large number of 22–28 kHz and 50–55 kHz FM USVs and that females drank significantly more alcohol compared to males over the entire course of the experiment. Analyses of USV acoustic characteristics (i.e. mean frequency, duration, bandwidth and power) revealed distinct sex-specific phenotypes in both 50–55 kHz FM and 22–28 kHz USV transmission that were modulated by ethanol exposure. Moreover, by using a linear combination of these acoustic characteristics, we were able to develop binomial logistic regression models able to discriminate between male and female HAD-1 rats with high accuracy. Together these results highlight unique emotional phenotypes in male and female HAD-1 rats that are differentially modulated by alcohol experience
Negative Affect-Associated USV Acoustic Characteristics Predict Future Excessive Alcohol Drinking and Alcohol Avoidance in Male P and NP Rats
BACKGROUND:
Negative emotional status and adverse emotional events increase vulnerability to alcohol abuse. Ultrasonic vocalizations (USVs) emitted by rats are a well-established model of emotional status that can reflect positive or negative affective responses in real time. Most USV studies assess counts, yet each USV is a multidimensional data point characterized by several acoustic characteristics that may provide insight into the neurocircuitry underlying emotional response.
METHODS:
USVs emitted from selectively bred alcohol-naïve and alcohol-experienced alcohol-preferring and nonpreferring rats (P and NP rats) were recorded during 4-hour sessions on alternating days over 4 weeks. Linear mixed modeling (LMM) and linear discriminant analysis (LDA) were applied to USV acoustic characteristics (e.g., frequency, duration, power, and bandwidth) of negative affect (22 to 28 kilohertz [kHz])- and positive (50 to 55 kHz) affect-related USVs.
RESULTS:
Hundred percent separation between alcohol-naïve P and NP rats was achieved through a linear combination (produced by LDA) of USV acoustic characteristics of 22- to 28-kHz USVs, whereas poor separation (36.5%) was observed for 50- to 55-kHz USVs. 22- to 28-kHz LDA separation was high (87%) between alcohol-experienced P and NP rats, but was poor for 50- to 55-kHz USVs (57.3%). USV mean frequency and duration were the highest weighted characteristics in both the naïve and experienced 22- to 28-kHz LDA representations suggesting that alcohol experience does not alter the representations. LMM analyses of 22- to 28-kHz USV acoustic characteristics matched the LDA results. Poor LDA separation was observed between alcohol-naïve and alcohol-experienced P rats for both 22- to 28-kHz and 50- to 55-kHz USVs.
CONCLUSIONS:
Advanced statistical analysis of negative affect-associated USV data predicts future behaviors of excessive alcohol drinking and alcohol avoidance in selectively bred rats. USV characteristics across rat lines reveal affect-related motivation to consume alcohol and may predict neural pathways mediating emotional response. Further characterization of these differences could delineate particular neurocircuitry and methods to ameliorate dysregulated emotional states often observed in human alcohol abusers
Constraining the invisible neutrino decay with KM3NeT-ORCA
Several theories of particle physics beyond the Standard Model consider that neutrinos can decay. In this work we assume that the standard mechanism of neutrino oscillations is altered by the decay of the heaviest neutrino mass state into a sterile neutrino and, depending on the model, a scalar or a Majoron. We study the sensitivity of the forthcoming KM3NeT-ORCA experiment to this scenario and find that it could improve the current bounds coming from oscillation experiments, where three-neutrino oscillations have been considered, by roughly two orders of magnitude. We also study how the presence of this neutrino decay can affect the determination of the atmospheric oscillation parameters sin^2(θ_23) and Δm^2_31, as well as the sensitivity to the neutrino mass ordering
Controlled propulsion and separation of helical particles at the nanoscale
Controlling the motion of nano and microscale objects in a fluid environment is a key factor in designing optimized tiny machines that perform mechanical tasks such as transport of drugs or genetic material in cells, fluid mixing to accelerate chemical reactions, and cargo transport in microfluidic chips. Directed motion is made possible by the coupled translational and rotational motion of asymmetric particles. A current challenge in achieving directed and controlled motion at the nanoscale lies in overcoming random Brownian motion due to thermal fluctuations in the fluid. We use a hybrid lattice-Boltzmann molecular dynamics method with full hydrodynamic interactions and thermal fluctuations to demonstrate that controlled propulsion of individual nanohelices in an aqueous environment is possible. We optimize the propulsion velocity and the efficiency of externally driven nanohelices. We quantify the importance of the thermal effects on the directed motion by calculating the Péclet number for various shapes, number of turns and pitch lengths of the helices. Consistent with the experimental microscale separation of chiral objects, our results indicate that in the presence of thermal fluctuations at Péclet numbers >10, chiral particles follow the direction of propagation according to its handedness and the direction of the applied torque making separation of chiral particles possible at the nanoscale. Our results provide criteria for the design and control of helical machines at the nanoscale
Shape and scale dependent diffusivity of colloidal nanoclusters and aggregates
© 2016, EDP Sciences and Springer.The diffusion of colloidal nanoparticles and nanomolecular aggregates, which plays an important role in various biophysical and physicochemical phenomena, is currently under intense study. Here, we examine the shape and size dependent diffusion of colloidal nano- particles, fused nanoclusters and nanoaggregates using a hybrid fluctuating lattice Boltzmann-Molecular Dynamics method. We use physically realistic parameters characteristic of an aqueous solution, with explicitly implemented microscopic no-slip and full-slip boundary conditions. Results from nanocolloids below 10 nm in radii demonstrate how the volume fraction of the hydrodynamic boundary layer influences diffusivities. Full-slip colloids are found to diffuse faster than no-slip particles. We also characterize the shape dependent anisotropy of the diffusion coefficients of nanoclusters through the Green-Kubo relation. Finally, we study the size dependence of the diffusion of nanoaggregates comprising N ≤ 108 monomers and demonstrate that the diffusion coefficient approaches the continuum scaling limit of N−1/3
Sex differences in cognitive performance and alcohol consumption in High Alcohol-Drinking (HAD-1) rats
Excessive alcohol (ethanol) consumption negatively impacts social, emotional, as well as cognitive function and well-being. Thus, identifying behavioral and/or biological predictors of excessive ethanol consumption is important for developing prevention and treatment strategies against alcohol use disorders (AUDs). Sex differences in alcohol consumption patterns are observed in humans, primates, and rodents. Selectively bred high alcohol-drinking rat lines, such as the “HAD-1” lines are recognized animal models of alcoholism. The present work examined sex differences in alcohol consumption, object recognition, and exploratory behavior in male and female HAD-1 rats. Naïve male and female HAD-1 rats were tested in an object recognition test (ORT) prior to a chronic 24 h intermittent ethanol access procedure for five weeks. Object recognition parameters measured included exploratory behavior, object investigation, and time spent near objects. During the initial training trial, rearing, active object investigation and amount of time spent in the object-containing section was significantly greater in female HAD-1 rats compared to their male counterparts. During the subsequent testing trial, time spent in the object-containing section was greater in female, compared to male, rats; but active object investigation and rearing did not statistically differ between females and males. In addition, female HAD-1 rats consumed significantly more ethanol than their male counterparts, replicating previous findings. Moreover, across all animals there was a significant positive correlation between exploratory behavior in ORT and ethanol consumption level. These results indicate there are significant sex differences in cognitive performance and alcohol consumption in HAD-1 rats, which suggests neurobiological differences as well
Measurement of and charged current inclusive cross sections and their ratio with the T2K off-axis near detector
We report a measurement of cross section and the first measurements of the cross section
and their ratio
at (anti-)neutrino energies below 1.5
GeV. We determine the single momentum bin cross section measurements, averaged
over the T2K -flux, for the detector target material (mainly
Carbon, Oxygen, Hydrogen and Copper) with phase space restricted laboratory
frame kinematics of 500 MeV/c. The
results are and $\sigma(\nu)=\left( 2.41\
\pm0.022{\rm{(stat.)}}\pm0.231{\rm (syst.)}\ \right)\times10^{-39}^{2}R\left(\frac{\sigma(\bar{\nu})}{\sigma(\nu)}\right)=
0.373\pm0.012{\rm (stat.)}\pm0.015{\rm (syst.)}$.Comment: 18 pages, 8 figure
Drug-tunable multidimensional synthetic gene control using inducible degron-tagged dCas9 effectors
Deactivated Cas9 fused to transactivation domains can be used to control gene expression, however its presence can prevent rapid switching between different regulatory states. Here the authors generate conditionally degradable dCas9 and Cpf1 proteins for multidimensional control of functional activity
Motor neuronopathy with dropped hands and downbeat nystagmus: A distinctive disorder? A case report
BACKGROUND: Eye movements are clinically normal in most patients with motor neuron disorders until late in the disease course. Rare patients are reported to show slow vertical saccades, impaired smooth pursuit, and gaze-evoked nystagmus. We report clinical and oculomotor findings in three patients with motor neuronopathy and downbeat nystagmus, a classic sign of vestibulocerebellar disease. CASE PRESENTATION: All patients had clinical and electrodiagnostic features of anterior horn cell disease. Involvement of finger and wrist extensors predominated, causing finger and wrist drop. Bulbar or respiratory dysfunction did not occur. All three had clinically evident downbeat nystagmus worse on lateral and downgaze, confirmed on eye movement recordings using the magnetic search coil technique in two patients. Additional oculomotor findings included alternating skew deviation and intermittent horizontal saccadic oscillations, in one patient each. One patient had mild cerebellar atrophy, while the other two had no cerebellar or brainstem abnormality on neuroimaging. The disorder is slowly progressive, with survival up to 30 years from the time of onset. CONCLUSION: The combination of motor neuronopathy, characterized by early and prominent wrist and finger extensor weakness, and downbeat nystagmus with or without other cerebellar eye movement abnormalities may represent a novel motor neuron syndrome
- …