8 research outputs found
Validity of inertial sensor based 3D joint kinematics of static and dynamic sport and physiotherapy specific movements
3D joint kinematics can provide important information about the quality of movements. Optical motion capture systems (OMC) are considered the gold standard in motion analysis. However, in recent years, inertial measurement units (IMU) have become a promising alternative. The aim of this study was to validate IMU-based 3D joint kinematics of the lower extremities during different movements. Twenty-eight healthy subjects participated in this study. They performed bilateral squats (SQ), single-leg squats (SLS) and countermovement jumps (CMJ). The IMU kinematics was calculated using a recently-described sensor-fusion algorithm. A marker based OMC system served as a reference. Only the technical error based on algorithm performance was considered, incorporating OMC data for the calibration, initialization, and a biomechanical model. To evaluate the validity of IMU-based 3D joint kinematics, root mean squared error (RMSE), range of motion error (ROME), Bland-Altman (BA) analysis as well as the coefficient of multiple correlation (CMC) were calculated. The evaluation was twofold. First, the IMU data was compared to OMC data based on marker clusters; and, second based on skin markers attached to anatomical landmarks. The first evaluation revealed means for RMSE and ROME for all joints and tasks below 3°. The more dynamic task, CMJ, revealed error measures approximately 1° higher than the remaining tasks. Mean CMC values ranged from 0.77 to 1 over all joint angles and all tasks. The second evaluation showed an increase in the RMSE of 2.28°– 2.58° on average for all joints and tasks. Hip flexion revealed the highest average RMSE in all tasks (4.87°– 8.27°). The present study revealed a valid IMU-based approach for the measurement of 3D joint kinematics in functional movements of varying demands. The high validity of the results encourages further development and the extension of the present approach into clinical settings
Feature extraction and gait classification in hip replacement patients on the basis of kinematic waveform data
Study aim: To find out, without relying on gait-specific assumptions or prior knowledge, which parameters are most important for the description of asymmetrical gait in patients after total hip arthroplasty (THA).
Material and methods: The gait of 22 patients after THA was recorded using an optical motion capture system. The waveform data of the marker positions, velocities, and accelerations, as well as joint and segment angles, were used as initial features. The random forest (RF) and minimum-redundancy maximum-relevance (mRMR) algorithms were chosen for feature selection. The results were compared with those obtained from the use of different dimensionality reduction methods.
Results: Hip movement in the sagittal plane, knee kinematics in the frontal and sagittal planes, marker position data of the anterior and posterior superior iliac spine, and acceleration data for markers placed at the proximal end of the fibula are highly important for classification (accuracy: 91.09%). With feature selection, better results were obtained compared to dimensionality reduction.
Conclusion: The proposed approaches can be used to identify and individually address abnormal gait patterns during the rehabilitation process via waveform data. The results indicate that position and acceleration data also provide significant information for this task
Interpretability of Input Representations for Gait Classification in Patients after Total Hip Arthroplasty
Many machine learning models show black box characteristics and, therefore, a lack of transparency, interpretability, and trustworthiness. This strongly limits their practical application in clinical contexts. For overcoming these limitations, Explainable Artificial Intelligence (XAI) has shown promising results. The current study examined the influence of different input representations on a trained model’s accuracy, interpretability, as well as clinical relevancy using XAI methods. The gait of 27 healthy subjects and 20 subjects after total hip arthroplasty (THA) was recorded with an inertial measurement unit (IMU)-based system. Three different input representations were used for classification. Local Interpretable Model-Agnostic Explanations (LIME) was used for model interpretation. The best accuracy was achieved with automatically extracted features (mean accuracy Macc = 100%), followed by features based on simple descriptive statistics (Macc = 97.38%) and waveform data (Macc = 95.88%). Globally seen, sagittal movement of the hip, knee, and pelvis as well as transversal movement of the ankle were especially important for this specific classification task. The current work shows that the type of input representation crucially determines interpretability as well as clinical relevance. A combined approach using different forms of representations seems advantageous. The results might assist physicians and therapists finding and addressing individual pathologic gait pattern
Interpretability of Input Representations for Gait Classification in Patients after Total Hip Arthroplasty
Many machine learning models show black box characteristics and, therefore, a lack of transparency, interpretability, and trustworthiness. This strongly limits their practical application in clinical contexts. For overcoming these limitations, Explainable Artificial Intelligence (XAI) has shown promising results. The current study examined the influence of different input representations on a trained model’s accuracy, interpretability, as well as clinical relevancy using XAI methods. The gait of 27 healthy subjects and 20 subjects after total hip arthroplasty (THA) was recorded with an inertial measurement unit (IMU)-based system. Three different input representations were used for classification. Local Interpretable Model-Agnostic Explanations (LIME) was used for model interpretation. The best accuracy was achieved with automatically extracted features (mean accuracy Macc = 100%), followed by features based on simple descriptive statistics (Macc = 97.38%) and waveform data (Macc = 95.88%). Globally seen, sagittal movement of the hip, knee, and pelvis as well as transversal movement of the ankle were especially important for this specific classification task. The current work shows that the type of input representation crucially determines interpretability as well as clinical relevance. A combined approach using different forms of representations seems advantageous. The results might assist physicians and therapists finding and addressing individual pathologic gait pattern
Validity of inertial sensor based 3D joint kinematics of static and dynamic sport and physiotherapy specific movements
3D joint kinematics can provide important information about the quality of movements. Optical motion capture systems (OMC) are considered the gold standard in motion analysis. However, in recent years, inertial measurement units (IMU) have become a promising alternative. The aim of this study was to validate IMU-based 3D joint kinematics of the lower extremities during different movements. Twenty-eight healthy subjects participated in this study. They performed bilateral squats (SQ), single-leg squats (SLS) and countermovement jumps (CMJ). The IMU kinematics was calculated using a recently-described sensor-fusion algorithm. A marker based OMC system served as a reference. Only the technical error based on algorithm performance was considered, incorporating OMC data for the calibration, initialization, and a biomechanical model. To evaluate the validity of IMU-based 3D joint kinematics, root mean squared error (RMSE), range of motion error (ROME), Bland-Altman (BA) analysis as well as the coefficient of multiple correlation (CMC) were calculated. The evaluation was twofold. First, the IMU data was compared to OMC data based on marker clusters; and, second based on skin markers attached to anatomical landmarks. The first evaluation revealed means for RMSE and ROME for all joints and tasks below 3°. The more dynamic task, CMJ, revealed error measures approximately 1° higher than the remaining tasks. Mean CMC values ranged from 0.77 to 1 over all joint angles and all tasks. The second evaluation showed an increase in the RMSE of 2.28°– 2.58° on average for all joints and tasks. Hip flexion revealed the highest average RMSE in all tasks (4.87°– 8.27°). The present study revealed a valid IMU-based approach for the measurement of 3D joint kinematics in functional movements of varying demands. The high validity of the results encourages further development and the extension of the present approach into clinical settings
Feature extraction and gait classification in hip replacement patients on the basis of kinematic waveform data
Study aim: To find out, without relying on gait-specific assumptions or prior knowledge, which parameters are most important for the description of asymmetrical gait in patients after total hip arthroplasty (THA).
Material and methods: The gait of 22 patients after THA was recorded using an optical motion capture system. The waveform data of the marker positions, velocities, and accelerations, as well as joint and segment angles, were used as initial features. The random forest (RF) and minimum-redundancy maximum-relevance (mRMR) algorithms were chosen for feature selection. The results were compared with those obtained from the use of different dimensionality reduction methods.
Results: Hip movement in the sagittal plane, knee kinematics in the frontal and sagittal planes, marker position data of the anterior and posterior superior iliac spine, and acceleration data for markers placed at the proximal end of the fibula are highly important for classification (accuracy: 91.09%). With feature selection, better results were obtained compared to dimensionality reduction.
Conclusion: The proposed approaches can be used to identify and individually address abnormal gait patterns during the rehabilitation process via waveform data. The results indicate that position and acceleration data also provide significant information for this task
Towards an Inertial Sensor-Based Wearable Feedback System for Patients after Total Hip Arthroplasty: Validity and Applicability for Gait Classification with Gait Kinematics-Based Features
Patients after total hip arthroplasty (THA) suffer from lingering musculoskeletal restrictions. Three-dimensional (3D) gait analysis in combination with machine-learning approaches is used to detect these impairments. In this work, features from the 3D gait kinematics, spatio temporal parameters (Set 1) and joint angles (Set 2), of an inertial sensor (IMU) system are proposed as an input for a support vector machine (SVM) model, to differentiate impaired and non-impaired gait. The features were divided into two subsets. The IMU-based features were validated against an optical motion capture (OMC) system by means of 20 patients after THA and a healthy control group of 24 subjects. Then the SVM model was trained on both subsets. The validation of the IMU system-based kinematic features revealed root mean squared errors in the joint kinematics from 0.24° to 1.25°. The validity of the spatio-temporal gait parameters (STP) revealed a similarly high accuracy. The SVM models based on IMU data showed an accuracy of 87.2% (Set 1) and 97.0% (Set 2). The current work presents valid IMU-based features, employed in an SVM model for the classification of the gait of patients after THA and a healthy control. The study reveals that the features of Set 2 are more significant concerning the classification problem. The present IMU system proves its potential to provide accurate features for the incorporation in a mobile gait-feedback system for patients after THA
Towards an Inertial Sensor-Based Wearable Feedback System for Patients after Total Hip Arthroplasty: Validity and Applicability for Gait Classification with Gait Kinematics-Based Features
Patients after total hip arthroplasty (THA) suffer from lingering musculoskeletal restrictions. Three-dimensional (3D) gait analysis in combination with machine-learning approaches is used to detect these impairments. In this work, features from the 3D gait kinematics, spatio temporal parameters (Set 1) and joint angles (Set 2), of an inertial sensor (IMU) system are proposed as an input for a support vector machine (SVM) model, to differentiate impaired and non-impaired gait. The features were divided into two subsets. The IMU-based features were validated against an optical motion capture (OMC) system by means of 20 patients after THA and a healthy control group of 24 subjects. Then the SVM model was trained on both subsets. The validation of the IMU system-based kinematic features revealed root mean squared errors in the joint kinematics from 0.24° to 1.25°. The validity of the spatio-temporal gait parameters (STP) revealed a similarly high accuracy. The SVM models based on IMU data showed an accuracy of 87.2% (Set 1) and 97.0% (Set 2). The current work presents valid IMU-based features, employed in an SVM model for the classification of the gait of patients after THA and a healthy control. The study reveals that the features of Set 2 are more significant concerning the classification problem. The present IMU system proves its potential to provide accurate features for the incorporation in a mobile gait-feedback system for patients after THA