231 research outputs found
Inner Molecular Rings in Barred Galaxies: BIMA SONG CO Observations
Although inner star-forming rings are common in optical images of barred
spiral galaxies, observational evidence for the accompanying molecular gas has
been scarce. In this paper we present images of molecular inner rings, traced
using the CO (1-0) emission line, from the
Berkeley-Illinois-Maryland-Association Survey of Nearby Galaxies (BIMA SONG).
We detect inner ring CO emission from all five SONG barred galaxies classified
as inner ring (type (r)). We also examine the seven SONG barred galaxies
classified as inner spiral (type (s)); in one of these, NGC 3627, we find
morphological and kinematic evidence for a molecular inner ring. Inner ring
galaxies have been classified as such based on optical images, which emphasize
recent star formation. We consider the possibility that there may exist inner
rings in which star formation efficiency is not enhanced. However, we find that
in NGC 3627 the inner ring star formation efficiency is enhanced relative to
most other regions in that galaxy. We note that the SONG (r) galaxies have a
paucity of CO and H alpha emission interior to the inner ring (except near the
nucleus), while NGC 3627 has relatively bright bar CO and H alpha emission; we
suggest that galaxies with inner rings such as NGC 3627 may be misclassified if
there are significant amounts of gas and star formation in the bar.Comment: To be published in the Astrophysical Journal, July 2002 A version of
the paper with full resolution figures is available at:
http://www.astro.umd.edu/~mregan/ms.ps.g
Scale-free equilibria of self-gravitating gaseous disks with flat rotation curves
We introduce exact analytical solutions of the steady-state hydrodynamic
equations of scale-free, self-gravitating gaseous disks with flat rotation
curves. We express the velocity field in terms of a stream function and obtain
a third-order ordinary differential equation (ODE) for the angular part of the
stream function. We present the closed-form solutions of the obtained ODE and
construct hydrodynamical counterparts of the power-law and elliptic disks, for
which self-consistent stellar dynamical models are known. We show that the
kinematics of the Large Magellanic Cloud can well be explained by our findings
for scale-free elliptic disks.Comment: AAS preprint format, 21 pages, 8 figures, accepted for publication in
The Astrophysical Journa
Synthesis and characterization of bis(eta(5)-1,2,3,4,5-pentamethylcyclopentadienyl)(eta(3)-1-phenylallyl)lanthanum center dot tetrahydrofuran
The title compound has been prepared from Cp-2*LaCl2K(THF)(2) and 1-PhC3H4K-(THF)(0.5) in THF suspension, forming yellow single crystals from hexane solution which were characterized in solid state and in solution by elementary analysis, IR, C-13- and variable temperature H-1-NMR spectroscopy and a crystal structure determination. Space group P1, Z = 2, T = 130 K, a = 8.595(1), b = 10.770(1), c = 17.903(5) angstrom, alpha = 93.54(1)degrees, beta = 98.30(1)degrees, gamma = 112.42(1)degrees, R = 0.0249
Bar Diagnostics in Edge-On Spiral Galaxies. II. Hydrodynamical Simulations
We develop diagnostics based on gas kinematics to identify the presence of a
bar in an edge-on spiral galaxy and determine its orientation. We use
position-velocity diagrams (PVDs) obtained by projecting edge-on
two-dimensional hydrodynamical simulations of the gas flow in a barred galaxy
potential. We show that when a nuclear spiral is formed, the presence of a gap
in the PVDs, between the signature of the nuclear spiral and that of the outer
parts of the disk, reliably indicates the presence of a bar. This gap is due to
the presence of shocks and inflows in the simulations, leading to a depletion
of the gas in the outer bar region. If no nuclear spiral signature is present
in a PVD, only indirect arguments can be used to argue for the presence of a
bar. The shape of the signature of the nuclear spiral, and to a lesser extent
that of the outer bar region, allows to determine the orientation of the bar
with respect to the line-of-sight. The presence of dust can also help to
discriminate between viewing angles on either side of the bar. Simulations
covering a large fraction of parameter space constrain the bar properties and
mass distribution of observed galaxies. The strongest constraint comes from the
presence or absence of the signature of a nuclear spiral in the PVD.Comment: 25 pages (AASTeX, aaspp4.sty), 11 jpg figures. Accepted for
publication in The Astrophysical Journal. Online manuscript with PostScript
figures available at: http://www.strw.leidenuniv.nl/~bureau/pub_list.htm
A highly efficient titanium-based olefin polymerisation catalyst with a monoanionic iminoimidazolidide pi-donor ancillary ligand
The titanium complex Cp[1,3-(2',6' Me2C6H3) (2)(CH2N)(2)C=N] Ti(CH2Ph)(2), with a monoanionic eta(1)-iminoimidazolidide ancillary ligand, is shown to be a highly efficient catalyst for olefin polymerisation when activated with the Lewis acid B(C6F5)(3)
Fabry Perot Halpha Observations of the Barred Spiral NGC 3367
We report the gross properties of the velocity field of the barred spiral
galaxy NGC 3367. The following values were found: inclination with respect to
the plane of the sky, i=30 deg; position angle (PA) of receding semi major axis
PA=51 and systemic velocity V(sys)=3032 km/s. Large velocity dispersion are
observed of upt o 120 km/s in the nuclear region, of up to 70 km/s near the
eastern bright sources just beyond the edge of the stellar bar where three
spiral arms seem to start and in the western bright sources at about 10 kpc.
Deviations from normal circular velocities are observed from all the disk but
mainly from the semi circle formed by the string of south western Halpha
sources. An estimate of the dynamical mass is M(dyn)=2x10^11 Msolar.Comment: Accepted to be published in May 2001 issue in the A.J. 19 pages, 7
figure
- …