72 research outputs found

    The continuous shearlet transform in arbitrary dimensions

    Full text link
    This paper is concerned with the generalization of the continuous shearlet transform to higher dimensions. Similar to the two-dimensional case, our approach is based on translations, anisotropic dilations and specific shear matrices. We show that the associated integral transform again originates from a square-integrable representation of a specific group, the full n-variate shearlet group. Moreover, we verify that by applying the coorbit theory, canonical scales of smoothness spaces and associated Banach frames can be derived. We also indicate how our transform can be used to characterize singularities in signals

    08492 Abstracts Collection -- Structured Decompositions and Efficient Algorithms

    Get PDF
    From 30.11. to 05.12.2008, the Dagstuhl Seminar 08492 ``Structured Decompositions and Efficient Algorithms \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Accelerated Projected Steepest Descent Method for Nonlinear Inverse Problems with Sparsity Constraints, Inverse Problems 26

    Full text link
    This paper is concerned with the construction of an iterative algorithm to solve nonlinear inverse problems with an â„“1 constraint. One extensively studied method to obtain a solution of such an â„“1 penalized problem is iterative soft-thresholding. Regrettably, such iteration schemes are computationally very intensive. A subtle alternative to iterative soft-thresholding is the projected gradient method that was quite recently proposed by Daubechies et.al. in [3]. The authors have shown that the proposed scheme is indeed numerically much thriftier. However, its current applicability is limited to linear inverse problems. In this paper we provide an extension of this approach to nonlinear problems. Adequately adapting the conditions on the (variable) thresholding parameter to the nonlinear nature, we can prove convergence in norm for this projected gradient method, with and without acceleration. A numerical verification is given in the context of nonlinear and non-ideal sensing. For this particular recovery problem we can achieve an impressive numerical performance (when comparing it to non-accelerated procedures)
    • …
    corecore