31 research outputs found
The snowfall-cloud at Syowa Station identified by convolutional neural network
The Tenth Symposium on Polar Science/Ordinary sessions: [OM] Polar Meteorology and Glaciology, Wed. 4 Dec. / 2F Auditorium, National Institute of Polar Researc
Cohesive and Anisotropic Vascular Endothelial Cell Motility Driving Angiogenic Morphogenesis
Vascular endothelial cells (ECs) in angiogenesis exhibit inhomogeneous collective migration called “cell mixing”, in which cells change their relative positions by overtaking each other. However, how such complex EC dynamics lead to the formation of highly ordered branching structures remains largely unknown. To uncover hidden laws of integration driving angiogenic morphogenesis, we analyzed EC behaviors in an in vitro angiogenic sprouting assay using mouse aortic explants in combination with mathematical modeling. Time-lapse imaging of sprouts extended from EC sheets around tissue explants showed directional cohesive EC movements with frequent U-turns, which often coupled with tip cell overtaking. Imaging of isolated branches deprived of basal cell sheets revealed a requirement of a constant supply of immigrating cells for ECs to branch forward. Anisotropic attractive forces between neighboring cells passing each other were likely to underlie these EC motility patterns, as evidenced by an experimentally validated mathematical model. These results suggest that cohesive movements with anisotropic cell-to-cell interactions characterize the EC motility, which may drive branch elongation depending on a constant cell supply. The present findings provide novel insights into a cell motility-based understanding of angiogenic morphogenesis
An examination of the methodology for detection of the cloud patterns related to the precipitation in the Antarctic
第6回極域科学シンポジウム[OM] 極域気水圏11月16日(月) 統計数理研究所 セミナー室2(D304
Quantitative Analysis for Whole Brain Images of Caenorhabditis Elegans: a Machine Learning approach
Open House, ISM in Tachikawa, 2016.6.17統計数理研究所オープンハウス(立川)、H28.6.17ポスター発
逐次的カーネル密度推定法を用いた4次元画像データ中の細胞の自動検出・追跡手法
Open House, ISM in Tachikawa, 2014.6.13統計数理研究所オープンハウス(立川)、H26.6.13ポスター発
A machine learning approach to whole brain neural network analysis of C. elegans
Open House, ISM in Tachikawa, 2017.6.16統計数理研究所オープンハウス(立川)、H29.6.16ポスター発
SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion
Abstract: The B.1.617.2 (Delta) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified in the state of Maharashtra in late 2020 and spread throughout India, outcompeting pre-existing lineages including B.1.617.1 (Kappa) and B.1.1.7 (Alpha)1. In vitro, B.1.617.2 is sixfold less sensitive to serum neutralizing antibodies from recovered individuals, and eightfold less sensitive to vaccine-elicited antibodies, compared with wild-type Wuhan-1 bearing D614G. Serum neutralizing titres against B.1.617.2 were lower in ChAdOx1 vaccinees than in BNT162b2 vaccinees. B.1.617.2 spike pseudotyped viruses exhibited compromised sensitivity to monoclonal antibodies to the receptor-binding domain and the amino-terminal domain. B.1.617.2 demonstrated higher replication efficiency than B.1.1.7 in both airway organoid and human airway epithelial systems, associated with B.1.617.2 spike being in a predominantly cleaved state compared with B.1.1.7 spike. The B.1.617.2 spike protein was able to mediate highly efficient syncytium formation that was less sensitive to inhibition by neutralizing antibody, compared with that of wild-type spike. We also observed that B.1.617.2 had higher replication and spike-mediated entry than B.1.617.1, potentially explaining the B.1.617.2 dominance. In an analysis of more than 130 SARS-CoV-2-infected health care workers across three centres in India during a period of mixed lineage circulation, we observed reduced ChAdOx1 vaccine effectiveness against B.1.617.2 relative to non-B.1.617.2, with the caveat of possible residual confounding. Compromised vaccine efficacy against the highly fit and immune-evasive B.1.617.2 Delta variant warrants continued infection control measures in the post-vaccination era