6,746 research outputs found

    Modeling and Detecting False Data Injection Attacks against Railway Traction Power Systems

    Get PDF
    Modern urban railways extensively use computerized sensing and control technologies to achieve safe, reliable, and well-timed operations. However, the use of these technologies may provide a convenient leverage to cyber-attackers who have bypassed the air gaps and aim at causing safety incidents and service disruptions. In this paper, we study false data injection (FDI) attacks against railways' traction power systems (TPSes). Specifically, we analyze two types of FDI attacks on the train-borne voltage, current, and position sensor measurements - which we call efficiency attack and safety attack -- that (i) maximize the system's total power consumption and (ii) mislead trains' local voltages to exceed given safety-critical thresholds, respectively. To counteract, we develop a global attack detection (GAD) system that serializes a bad data detector and a novel secondary attack detector designed based on unique TPS characteristics. With intact position data of trains, our detection system can effectively detect the FDI attacks on trains' voltage and current measurements even if the attacker has full and accurate knowledge of the TPS, attack detection, and real-time system state. In particular, the GAD system features an adaptive mechanism that ensures low false positive and negative rates in detecting the attacks under noisy system measurements. Extensive simulations driven by realistic running profiles of trains verify that a TPS setup is vulnerable to the FDI attacks, but these attacks can be detected effectively by the proposed GAD while ensuring a low false positive rate.Comment: IEEE/IFIP DSN-2016 and ACM Trans. on Cyber-Physical System

    Non-degenerate solutions of universal Whitham hierarchy

    Full text link
    The notion of non-degenerate solutions for the dispersionless Toda hierarchy is generalized to the universal Whitham hierarchy of genus zero with M+1M+1 marked points. These solutions are characterized by a Riemann-Hilbert problem (generalized string equations) with respect to two-dimensional canonical transformations, and may be thought of as a kind of general solutions of the hierarchy. The Riemann-Hilbert problem contains MM arbitrary functions Ha(z0,za)H_a(z_0,z_a), a=1,...,Ma = 1,...,M, which play the role of generating functions of two-dimensional canonical transformations. The solution of the Riemann-Hilbert problem is described by period maps on the space of (M+1)(M+1)-tuples (zα(p):α=0,1,...,M)(z_\alpha(p) : \alpha = 0,1,...,M) of conformal maps from MM disks of the Riemann sphere and their complements to the Riemann sphere. The period maps are defined by an infinite number of contour integrals that generalize the notion of harmonic moments. The FF-function (free energy) of these solutions is also shown to have a contour integral representation.Comment: latex2e, using amsmath, amssym and amsthm packages, 32 pages, no figur

    Casimir effect of electromagnetic field in Randall-Sundrum spacetime

    Full text link
    We study the finite temperature Casimir effect on a pair of parallel perfectly conducting plates in Randall-Sundrum model without using scalar field analogy. Two different ways of interpreting perfectly conducting conditions are discussed. The conventional way that uses perfectly conducting condition induced from 5D leads to three discrete mode corrections. This is very different from the result obtained from imposing 4D perfectly conducting conditions on the 4D massless and massive vector fields obtained by decomposing the 5D electromagnetic field. The latter only contains two discrete mode corrections, but it has a continuum mode correction that depends on the thicknesses of the plates. It is shown that under both boundary conditions, the corrections to the Casimir force make the Casimir force more attractive. The correction under 4D perfectly conducting condition is always smaller than the correction under the 5D induced perfectly conducting condition. These statements are true at any temperature.Comment: 20 pages, 4 figure

    The Multicomponent KP Hierarchy: Differential Fay Identities and Lax Equations

    Full text link
    In this article, we show that four sets of differential Fay identities of an NN-component KP hierarchy derived from the bilinear relation satisfied by the tau function of the hierarchy are sufficient to derive the auxiliary linear equations for the wave functions. From this, we derive the Lax representation for the NN-component KP hierarchy, which are equations satisfied by some pseudodifferential operators with matrix coefficients. Besides the Lax equations with respect to the time variables proposed in \cite{2}, we also obtain a set of equations relating different charge sectors, which can be considered as a generalization of the modified KP hierarchy proposed in \cite{3}.Comment: 19 page
    • …
    corecore