3 research outputs found

    Reactions of pyrrole, imidazole, and pyrazole with ozone:Kinetics and mechanisms

    Get PDF
    Five-membered nitrogen-containing heterocyclic compounds (azoles) belong to potential moieties in complex structures where transformations during ozonation can occur. This study focused on the azole-ozone chemistry of pyrrole, imidazole, and pyrazole as model compounds. Reaction kinetics and ozonation products were determined by kinetic and analytical methods including NMR, LC-HRMS/MS, HPLC-UV, and IC-MS. Analyses of reactive oxygen species (O-1(2), & x2d9;OH, H2O2), quantum chemical computations (Gibbs energies), and kinetic simulations were used to further support the proposed reaction mechanisms. The species-specific second-order rate constants for the reactions of ozone with pyrrole and imidazole were (1.4 +/- 1.1) x 10(6) M-1 s(-1) and (2.3 +/- 0.1) x 10(5) M-1 s(-1), respectively. Pyrazole reacted more slowly with ozone at pH 7 (k(app) = (5.6 +/- 0.9) x 10(1) M-1 s(-1)). Maleimide was an identified product of pyrrole with a 34% yield. Together with other products, formate, formamide, and glyoxal, C and N mass balances of similar to 50% were achieved. Imidazole reacted with ozone to cyanate, formamide, and formate (similar to 100% yields per transformed imidazole, respectively) with a closed mass balance. For pyrazole, a high ozone : pyrazole molar stoichiometry of 4.6 was found, suggesting that the transformation products contributed to the over-stoichiometric consumption of ozone (e.g., hydroxypyrazoles). Glyoxal and formate were the only identified transformation products (C mass balance of 65%). Overall, the identified major products are suspected to hydrolyze and/or be biodegraded and thereby abated by a biological post-treatment typically following ozonation. However, as substructures of more complex compounds (e.g., micropollutants), they might be more persistent during biological post-treatment

    Exploring the aqueous vertical ionization of organic molecules by molecular simulation and liquid microjet photoelectron spectroscopy

    No full text
    To study the influence of aqueous solvent on the electronic energy levels of dissolved organic molecules, we conducted liquid microjet photoelectron spectroscopy (PES) measurements of the aqueous vertical ionization energies (VIEaq) of aniline (7.49 eV), veratrole alcohol (7.68 eV), and imidazole (8.51 eV). We also reanalyzed previously reported experimental PES data for phenol, phenolate, thymidine, and protonated imidazolium cation. We then simulated PE spectra by means of QM/MM molecular dynamics and EOM-IP-CCSD calculations with effective fragment potentials, used to describe the aqueous vertical ionization energies for six molecules, including aniline, phenol, veratrole alcohol, imidazole, methoxybenzene, and dimethylsulfide. Experimental and computational data enable us to decompose the VIEaq into elementary processes. For neutral compounds, the shift in VIE upon solvation, Delta VIEaq, was found to range from approximate to-0.5 to -0.91 eV. The Delta VIEaq was further explained in terms of the influence of deforming the gas phase solute into its solution phase conformation, the influence of solute hydrogen-bond donor and acceptor interactions with proximate solvent molecules, and the polarization of about 3000 outerlying solvent molecules. Among the neutral compounds, variability in Delta VIEaq appeared largely controlled by differences in solutesolvent hydrogen-bonding interactions. Detailed computational analysis of the flexible molecule veratrole alcohol reveals that the VIE is strongly dependent on molecular conformation in both gas and aqueous phases. Finally, aqueous reorganization energies of the oxidation half-cell ionization reaction were determined from experimental data or estimated from simulation for the six compounds aniline, phenol, phenolate, veratrole alcohol, dimethylsulfide, and methoxybenzene, revealing a surprising constancy of 2.06 to 2.35 eV
    corecore