1,950 research outputs found

    Color-octet scalars at the LHC

    Full text link
    Color-octet scalars, if present at the TeV scale, will be produced in abundance at the LHC. We discuss in some detail the phenomenology of scalars in the (8,2)_{1/2} representation, recently identified by Manohar and Wise as an addition to the standard-model Higgs sector consistent with the principle of minimal flavor violation. Couplings of this multiplet to the Higgs lift the mass degeneracy among its states, possibly allowing for two-body decays of a heavier colored scalar to a lighter one and a gauge boson. We perform a renormalization group analysis of these couplings and find that limits from Tevatron searches leave little room for these decays. This fact, and the assumption of minimal flavor violation, lead us to study the case where the octets decay to the heaviest kinematically accessible fermion pairs. Focusing on pair-production events leading to (t t-bar t t-bar), (b b-bar b b-bar), and (b b-bar t t-bar) final states, we find that discovery at the LHC should be possible up to masses exceeding 1 TeV.Comment: 15 pages, 6 figues; corrected typos and added discussion of decays to b b-ba

    Cathodoluminescence and Cross-sectional Transmission Electron Microscopy Studies for Deformation Behaviors of GaN Thin Films Under Berkovich Nanoindentation

    Get PDF
    In this study, details of Berkovich nanoindentation-induced mechanical deformation mechanisms of metal-organic chemical-vapor deposition-derived GaN thin films have been systematic investigated with the aid of the cathodoluminescence (CL) and the cross-sectional transmission electron microscopy (XTEM) techniques. The multiple “pop-in” events were observed in the load-displacement (P–h) curve and appeared to occur randomly by increasing the indentation load. These instabilities are attributed to the dislocation nucleation and propagation. The CL images of nanoindentation show very well-defined rosette structures with the hexagonal system and, clearly display the distribution of deformation-induced extended defects/dislocations which affect CL emission. By using focused ion beam milling to accurately position the cross-section of an indented area, XTEM results demonstrate that the major plastic deformation is taking place through the propagation of dislocations. The present observations are in support to the massive dislocations activities occurring underneath the indenter during the loading cycle. No evidence of either phase transformation or formation of micro-cracking was observed by means of scanning electron microscopy and XTEM observations. We also discuss how these features correlate with Berkovich nanoindentation produced defects/dislocations structures

    Quantum Walks on Trees with Disorder: Decay, Diffusion, and Localization

    Full text link
    Quantum walks have been shown to have impressive transport properties compared to classical random walks. However, imperfections in the quantum walk algorithm can destroy any quantum mechanical speed-up due to Anderson localization. We numerically study the effect of static disorder on a quantum walk on the glued trees graph. For small disorder, we find that the dominant effect is a type of quantum decay, and not quantum localization. For intermediate disorder, there is a crossover to diffusive transport, while a localization transition is observed at large disorder, in agreement with Anderson localization on the Cayley tree.Comment: 12 pages, 13 figure

    Optical Nondestructive Controlled-NOT Gate without Using Entangled Photons

    Full text link
    We present and experimentally demonstrate a novel optical nondestructive controlled-NOT gate without using entangled ancilla. With much fewer measurements compared with quantum process tomography, we get a good estimation of the gate fidelity. The result shows a great improvement compared with previous experiments. Moreover, we also show that quantum parallelism is achieved in our gate and the performance of the gate can not be reproduced by local operations and classical communications.Comment: 5 pages, 3 figures, Slight changes have been made, Journal-ref adde
    corecore