47 research outputs found

    Multiscale Toxicology - Building the Next Generation Tools for Toxicology

    Get PDF
    A Cooperative Research and Development Agreement (CRADA) was sponsored by Battelle Memorial Institute (Battelle, Columbus), to initiate a collaborative research program across multiple Department of Energy (DOE) National Laboratories aimed at developing a suite of new capabilities for predictive toxicology. Predicting the potential toxicity of emerging classes of engineered nanomaterials was chosen as one of two focusing problems for this program. PNNL’s focus toward this broader goal was to refine and apply experimental and computational tools needed to provide quantitative understanding of nanoparticle dosimetry for in vitro cell culture systems, which is necessary for comparative risk estimates for different nanomaterials or biological systems. Research conducted using lung epithelial and macrophage cell models successfully adapted magnetic particle detection and fluorescent microscopy technologies to quantify uptake of various forms of engineered nanoparticles, and provided experimental constraints and test datasets for benchmark comparison against results obtained using an in vitro computational dosimetry model, termed the ISSD model. The experimental and computational approaches developed were used to demonstrate how cell dosimetry is applied to aid in interpretation of genomic studies of nanoparticle-mediated biological responses in model cell culture systems. The combined experimental and theoretical approach provides a highly quantitative framework for evaluating relationships between biocompatibility of nanoparticles and their physical form in a controlled manner

    24-hour human urine and serum profiles of bisphenol A following ingestion in soup: Individual pharmacokinetic data and emographics

    Get PDF
    AbstractHere we present data to evaluate potential absorption of Bisphenol A through non-metabolizing tissues of the upper digestive tract. Concurrent serum and urine concentrations of d6-BPA, and its glucuronide and sulfate conjugates, were measured over a 24h period in 10 adult male volunteers following ingestion of 30ÎŒg d6-BPA/kg body weight in soup. The pharmacokinetic behavior of BPA and its metabolites in this cohort (rapid absorption, complete elimination, evidence against sublingual absorption) was reported. This Data in Brief article contains the corresponding individual pharmacokinetic data, reports the demographics of the cohort and provides additional details related to the analytical methods employed and is related to [4]

    Decoding the Molecular Universe -- Workshop Report

    Full text link
    On August 9-10, 2023, a workshop was convened at the Pacific Northwest National Laboratory (PNNL) in Richland, WA that brought together a group of internationally recognized experts in metabolomics, natural products discovery, chemical ecology, chemical and biological threat assessment, cheminformatics, computational chemistry, cloud computing, artificial intelligence, and novel technology development. These experts were invited to assess the value and feasibility of a grand-scale project to create new technologies that would allow the identification and quantification of all small molecules, or to decode the molecular universe. The Decoding the Molecular Universe project would extend and complement the success of the Human Genome Project by developing new capabilities and technologies to measure small molecules (defined as non-protein, non-polymer molecules less than 1500 Daltons) of any origin and generated in biological systems or produced abiotically. Workshop attendees 1) explored what new understanding of biological and environmental systems could be revealed through the lens of small molecules; 2) characterized the similarities in current needs and technical challenges between each science or mission area for unambiguous and comprehensive determination of the composition and quantities of small molecules of any sample; 3) determined the extent to which technologies or methods currently exist for unambiguously and comprehensively determining the small molecule composition of any sample and in a reasonable time; and 4) identified the attributes of the ideal technology or approach for universal small molecule measurement and identification. The workshop concluded with a discussion of how a project of this scale could be undertaken, possible thrusts for the project, early proof-of-principle applications, and similar efforts upon which the project could be modeled
    corecore