3,317 research outputs found
A Two-level Prediction Model for Deep Reactive Ion Etch (DRIE)
We contribute a quantitative and systematic model to capture etch non-uniformity in deep reactive ion etch of microelectromechanical systems (MEMS) devices. Deep reactive ion etch is commonly used in MEMS fabrication where high-aspect ratio features are to be produced in silicon. It is typical for many supposedly identical devices, perhaps of diameter 10 mm, to be etched simultaneously into one silicon wafer of diameter 150 mm. Etch non-uniformity depends on uneven distributions of ion and neutral species at the wafer level, and on local consumption of those species at the device, or die, level. An ion–neutral synergism model is constructed from data obtained from etching several layouts of differing pattern opening densities. Such a model is used to predict wafer-level variation with an r.m.s. error below 3%. This model is combined with a die-level model, which we have reported previously, on a MEMS layout. The two-level model is shown to enable prediction of both within-die and wafer-scale etch rate variation for arbitrary wafer loadings.Singapore-MIT Alliance (SMA
Optogalvanic Spectroscopy of Metastable States in Yb^{+}
The metastable ^{2}F_{7/2} and ^{2}D_{3/2} states of Yb^{+} are of interest
for applications in metrology and quantum information and also act as dark
states in laser cooling. These metastable states are commonly repumped to the
ground state via the 638.6 nm ^{2}F_{7/2} -- ^{1}D[5/2]_{5/2} and 935.2 nm
^{2}D_{3/2} -- ^{3}D[3/2]_{1/2} transitions. We have performed optogalvanic
spectroscopy of these transitions in Yb^{+} ions generated in a discharge. We
measure the pressure broadening coefficient for the 638.6 nm transition to be
70 \pm 10 MHz mbar^{-1}. We place an upper bound of 375 MHz/nucleon on the
638.6 nm isotope splitting and show that our observations are consistent with
theory for the hyperfine splitting. Our measurements of the 935.2 nm transition
extend those made by Sugiyama et al, showing well-resolved isotope and
hyperfine splitting. We obtain high signal to noise, sufficient for laser
stabilisation applications.Comment: 8 pages, 5 figure
Ferromagnetic Properties of ZrZn
The low Curie temperature (T_C approx 28K) and small ordered moment (M_0
approx 0.17 mu_B f.u.^-1) of ZrZn2 make it one of the few examples of a weak
itinerant ferromagnet. We report results of susceptibility, magnetization,
resistivity and specific heat measurements made on high-quality single crystals
of ZrZn2. From magnetization scaling in the vicinity of T_C
(0.001<|T-T_C|/T_C<0.08), we obtain the critical exponents beta=0.52+/-0.05 and
delta=3.20+/-0.08, and T_C=27.50+/-0.05K. Low-temperature magnetization
measurements show that the easy axis is [111]. Resistivity measurements reveal
an anomaly at T_C and a non-Fermi liquid temperature dependence
rho(T)=rho_0+AT^n, where n=1.67+/-0.02, for 1<T<14K. The specific heat
measurements show a mean-field-like anomaly at T_C. We compare our results to
various theoretical models.Comment: submitted to PR
Recommended from our members
Object-Space Optimization of Tomographic Reconstructions for Additive Manufacturing
Volumetric 3D printing motivated by computed axial lithography enables rapid printing of homogeneous parts but requires a high dimensionality gradient-descent optimization to calculate image sets. Here we introduce a new, simpler approach to image-computation that algebraically optimizes a model of the printed object, significantly improving print accuracy of complex parts under imperfect material and optical precision by improving optical dose contrast between the target and surrounding regions. Quality metrics for volumetric printing are defined and shown to be significantly improved by the new algorithm. The approach is extended beyond binary printing to grayscale control of conversion to enable functionally graded materials. The flexibility of the technique is digitally demonstrated with realistic projector point spread functions, printing around occluding structures, printing with restricted angular range, and incorporation of materials chemistry such as inhibition. Finally, simulations show that the method facilitates new printing modalities such as printing into flat, rather than cylindrical packages to extend the applications of volumetric printing.
</p
Search For Trapped Antihydrogen
We present the results of an experiment to search for trapped antihydrogen
atoms with the ALPHA antihydrogen trap at the CERN Antiproton Decelerator.
Sensitive diagnostics of the temperatures, sizes, and densities of the trapped
antiproton and positron plasmas have been developed, which in turn permitted
development of techniques to precisely and reproducibly control the initial
experimental parameters. The use of a position-sensitive annihilation vertex
detector, together with the capability of controllably quenching the
superconducting magnetic minimum trap, enabled us to carry out a
high-sensitivity and low-background search for trapped synthesised antihydrogen
atoms. We aim to identify the annihilations of antihydrogen atoms held for at
least 130 ms in the trap before being released over ~30 ms. After a three-week
experimental run in 2009 involving mixing of 10^7 antiprotons with 1.3 10^9
positrons to produce 6 10^5 antihydrogen atoms, we have identified six
antiproton annihilation events that are consistent with the release of trapped
antihydrogen. The cosmic ray background, estimated to contribute 0.14 counts,
is incompatible with this observation at a significance of 5.6 sigma. Extensive
simulations predict that an alternative source of annihilations, the escape of
mirror-trapped antiprotons, is highly unlikely, though this possibility has not
yet been ruled out experimentally.Comment: 12 pages, 7 figure
Black Holes as Effective Geometries
Gravitational entropy arises in string theory via coarse graining over an
underlying space of microstates. In this review we would like to address the
question of how the classical black hole geometry itself arises as an effective
or approximate description of a pure state, in a closed string theory, which
semiclassical observers are unable to distinguish from the "naive" geometry. In
cases with enough supersymmetry it has been possible to explicitly construct
these microstates in spacetime, and understand how coarse-graining of
non-singular, horizon-free objects can lead to an effective description as an
extremal black hole. We discuss how these results arise for examples in Type II
string theory on AdS_5 x S^5 and on AdS_3 x S^3 x T^4 that preserve 16 and 8
supercharges respectively. For such a picture of black holes as effective
geometries to extend to cases with finite horizon area the scale of quantum
effects in gravity would have to extend well beyond the vicinity of the
singularities in the effective theory. By studying examples in M-theory on
AdS_3 x S^2 x CY that preserve 4 supersymmetries we show how this can happen.Comment: Review based on lectures of JdB at CERN RTN Winter School and of VB
at PIMS Summer School. 68 pages. Added reference
Early Restrictive or Liberal Fluid Management for Sepsis-Induced Hypotension
BACKGROUND: Intravenous fluids and vasopressor agents are commonly used in early resuscitation of patients with sepsis, but comparative data for prioritizing their delivery are limited.
METHODS: In an unblinded superiority trial conducted at 60 U.S. centers, we randomly assigned patients to either a restrictive fluid strategy (prioritizing vasopressors and lower intravenous fluid volumes) or a liberal fluid strategy (prioritizing higher volumes of intravenous fluids before vasopressor use) for a 24-hour period. Randomization occurred within 4 hours after a patient met the criteria for sepsis-induced hypotension refractory to initial treatment with 1 to 3 liters of intravenous fluid. We hypothesized that all-cause mortality before discharge home by day 90 (primary outcome) would be lower with a restrictive fluid strategy than with a liberal fluid strategy. Safety was also assessed.
RESULTS: A total of 1563 patients were enrolled, with 782 assigned to the restrictive fluid group and 781 to the liberal fluid group. Resuscitation therapies that were administered during the 24-hour protocol period differed between the two groups; less intravenous fluid was administered in the restrictive fluid group than in the liberal fluid group (difference of medians, -2134 ml; 95% confidence interval [CI], -2318 to -1949), whereas the restrictive fluid group had earlier, more prevalent, and longer duration of vasopressor use. Death from any cause before discharge home by day 90 occurred in 109 patients (14.0%) in the restrictive fluid group and in 116 patients (14.9%) in the liberal fluid group (estimated difference, -0.9 percentage points; 95% CI, -4.4 to 2.6; P = 0.61); 5 patients in the restrictive fluid group and 4 patients in the liberal fluid group had their data censored (lost to follow-up). The number of reported serious adverse events was similar in the two groups.
CONCLUSIONS: Among patients with sepsis-induced hypotension, the restrictive fluid strategy that was used in this trial did not result in significantly lower (or higher) mortality before discharge home by day 90 than the liberal fluid strategy. (Funded by the National Heart, Lung, and Blood Institute; CLOVERS ClinicalTrials.gov number, NCT03434028)
Measurement of the cross-section and charge asymmetry of bosons produced in proton-proton collisions at TeV with the ATLAS detector
This paper presents measurements of the and cross-sections and the associated charge asymmetry as a
function of the absolute pseudorapidity of the decay muon. The data were
collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with
the ATLAS experiment at the LHC and correspond to a total integrated luminosity
of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements
varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the
1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured
with an uncertainty between 0.002 and 0.003. The results are compared with
predictions based on next-to-next-to-leading-order calculations with various
parton distribution functions and have the sensitivity to discriminate between
them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables,
submitted to EPJC. All figures including auxiliary figures are available at
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS
The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ψγ (with J/ψ → μ + μ −) where photons are reconstructed from γ → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured
- …