10 research outputs found

    Compensation strategies for robotic motion errors for additive manufacturing (AM)

    Get PDF
    It is desirable to utilise a robotic approach in additive manufacturing as Computer Numerical Control (CNC) is expensive and it has high maintenance costs. A robotic approach is relatively inexpensive compared to CNC and can provide much more flexibility, enabling a variety of configurations and easier parallel processing. However, robots struggle to achieve high positioning accuracy and are more prone to disturbances from the process forces. This paper attempts to characterise the robot position and velocity errors, which depend on the build strategy deployed, using a laser speckle correlation sensor to measure the robotic motion. An assessment has been done as to whether these errors would cause any problem in additive manufacturing techniques, where the test parts were built using the Wire+Arc Additive Manufacture (WAAM) technique. Finally, different compensation strategies are discussed to counter the robotic errors and a reduction of 3 mm in top surface profile irregularity by varying the wire feed speed (WFS) during the path has been demonstrated

    Towards high resolution absolute angle sensing using dual-wavelength laser speckle

    Get PDF
    We present a two dimensional angle sensor with greater than 0.01 degrees resolution, using dual-wavelength laser speckle. The technique uses speckle correlation of a double speckle pattern, determining absolute surface tilt from a single frame. A constructed sensor was used to measure a grid of 2D angles between ±0.25° rotating around both x and y axes. Sensor performance was limited by laser mode instability effects, however an analysis of measurements demonstrated that a stable mode output could achieve bias errors of less than 0.010°, and standard deviations of 0.003° around x and 0.021° around y .EP/S01313X/1, EP/R512515/

    Laser speckle velocimetry for robot manufacturing

    Get PDF
    A non-contact speckle correlation sensor for the measurement of robotic tool speed is presented for use in robotic manufacturing and is capable of measuring the in-plane relative velocities between a robot end-effector and the workpiece or other surface. The sensor performance was assessed in the laboratory with the sensor accuracies found to be better than 0:01 mm/s over a 70 mm/s velocity range. Finally an example of the sensors application to robotic manufacturing is presented where the sensor was applied to tool speed measurement for path planning in the wire and arc additive manufacturing process using a KUKA KR150 L110/2 industrial robot

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    The Development of Gene Therapy: From Monogenic Recessive Disorders to Complex Diseases Such as Cancer

    Full text link
    corecore